
Holistic Data Extraction From

Technical Documentation For

Generating Embedded Software

Master Thesis

Niklas Hauser

The present work was submitted to the

Chair of Communication and Distributed Systems

RWTH Aachen University, Germany

Advisor:

Jan Pennekamp, M. Sc.

Examiners:

Prof. Dr.-Ing. Klaus Wehrle
Prof. Dr.-Ing. Stefan Kowalewski

Registration date: January 11, 2022
Submission date: July 11, 2022

Zentrales Prüfungsamt/Central Examination Office

Eidesstattliche Versicherung
Statutory Declaration in Lieu of an Oath

___________________________ ___________________________

Name, Vorname/Last Name, First Name Matrikelnummer (freiwillige Angabe)
Matriculation No. (optional)

Ich versichere hiermit an Eides Statt, dass ich die vorliegende Arbeit/Bachelorarbeit/

Masterarbeit* mit dem Titel
I hereby declare in lieu of an oath that I have completed the present paper/Bachelor thesis/Master thesis* entitled

__

__

__

selbstständig und ohne unzulässige fremde Hilfe (insbes. akademisches Ghostwriting)

erbracht habe. Ich habe keine anderen als die angegebenen Quellen und Hilfsmittel benutzt.

Für den Fall, dass die Arbeit zusätzlich auf einem Datenträger eingereicht wird, erkläre ich,

dass die schriftliche und die elektronische Form vollständig übereinstimmen. Die Arbeit hat in

gleicher oder ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.
independently and without illegitimate assistance from third parties (such as academic ghostwriters). I have used no other than

the specified sources and aids. In case that the thesis is additionally submitted in an electronic format, I declare that the written

and electronic versions are fully identical. The thesis has not been submitted to any examination body in this, or similar, form.

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

 *Nichtzutreffendes bitte streichen

*Please delete as appropriate

Belehrung:
Official Notification:

§ 156 StGB: Falsche Versicherung an Eides Statt

Wer vor einer zur Abnahme einer Versicherung an Eides Statt zuständigen Behörde eine solche Versicherung

falsch abgibt oder unter Berufung auf eine solche Versicherung falsch aussagt, wird mit Freiheitsstrafe bis zu drei

Jahren oder mit Geldstrafe bestraft.

Para. 156 StGB (German Criminal Code): False Statutory Declarations

Whoever before a public authority competent to administer statutory declarations falsely makes such a declaration or falsely

testifies while referring to such a declaration shall be liable to imprisonment not exceeding three years or a fine.
§ 161 StGB: Fahrlässiger Falscheid; fahrlässige falsche Versicherung an Eides Statt

(1) Wenn eine der in den §§ 154 bis 156 bezeichneten Handlungen aus Fahrlässigkeit begangen worden ist, so

tritt Freiheitsstrafe bis zu einem Jahr oder Geldstrafe ein.

(2) Straflosigkeit tritt ein, wenn der Täter die falsche Angabe rechtzeitig berichtigt. Die Vorschriften des § 158

Abs. 2 und 3 gelten entsprechend.

Para. 161 StGB (German Criminal Code): False Statutory Declarations Due to Negligence

(1) If a person commits one of the offences listed in sections 154 through 156 negligently the penalty shall be imprisonment not
exceeding one year or a fine.
(2) The offender shall be exempt from liability if he or she corrects their false testimony in time. The provisions of section 158 (2)
and (3) shall apply accordingly.

Die vorstehende Belehrung habe ich zur Kenntnis genommen:
I have read and understood the above official notification:

___________________________ ___________________________

Ort, Datum/City, Date Unterschrift/Signature

Hauser, Niklas

Holistic Data Extraction From

Technical Documentation For

Generating Embedded Software

Aachen, 11.07.2022

Aachen, 11.07.2022

Abstract

With an ever expanding selection of embedded hardware comes the challenge of
porting hardware-dependent software (HdS) to thousands of new devices. Vendors
typically provide their HdS libraries only in the C programming language, which
cannot be reused if a project uses new programming languages or needs a special-
ized HdS stack. In these cases, the effort to manually port HdS to new devices is
significant, but can be reduced with the use of code generators. However, exist-
ing data sources to use for model-driven software engineering are strictly limited to
what the vendor chooses to publish in machine-readable formats. In contrast, the
technical documentation contains much more data, but is difficult to access due to
the print-oriented nature of the portable document format. In this thesis, we design
and implement a modular data processor for extracting data from the technical doc-
umentation using table processing. To achieve the highest quality and coverage, we
then merge this data with machine-readable sources into a single knowledge graph of
embedded hardware descriptions. Our evaluation demonstrates the resulting dataset
to be of a very high quality and consistency, proving the usefulness of our processor
design for future embedded software projects.

Kurzfassung

Die ständig wachsende Auswahl an eingebetteter Hardware bringt die Herausforde-
rung mit sich, hardwareabhängige Software (HdS) auf Tausende von neuen Geräten
zu portieren. Hersteller stellen ihre HdS-Bibliotheken in der Regel nur in der Pro-
grammiersprache C zur Verfügung, die aber nicht wiederverwendet werden können,
wenn ein Projekt andere Programmiersprachen verwendet oder eine spezielle HdS
benötigt. In diesen Fällen ist der Aufwand für die manuelle Portierung der HdS auf
neue Geräte beträchtlich, kann aber durch den Einsatz von Code-Generatoren redu-
ziert werden. Die vorhandenen Datenquellen sind jedoch streng auf das beschränkt,
was der Hersteller in maschinenlesbaren Formaten veröffentlicht. Im Gegensatz da-
zu enthält die technische Dokumentation viel mehr Daten, ist aber aufgrund des
druckorientierten Charakters des Portable Document Formats schwer zugänglich.
In dieser Arbeit entwerfen und implementieren wir einen modularen Datenprozes-
sor zur Extraktion von Daten aus dieser Dokumentation mittels Table Processing.
Um eine möglichst hohe Qualität und Abdeckung zu erreichen, führen wir diese
Daten dann mit maschinenlesbaren Quellen zu einem einzigen Wissensgraphen von
Beschreibungen eingebetteter Hardware zusammen. Unsere Evaluierung zeigt, dass
der resultierende Datensatz von sehr hoher Qualität und Konsistenz ist, was die
Nützlichkeit unseres Designs für zukünftige Embedded-Software-Projekte beweist.

Acknowledgments

I would like to thank my supervisor Jan Pennekamp for his steady guidance through-
out this thesis. Our many productive discussions made sure I stayed on schedule
and focused on the next steps. His frequent and precise feedback helped me improve
my academic writing skills and always pointed me in the right direction regarding
the structure and content of this thesis.

Furthermore, I would like to thank the COMSYS team for all the great lectures
that got me acquainted with the chair and highly interested in their teaching and
research topics. I also want to express my thanks to Prof. Dr.-Ing. Klaus Wehrle
for the opportunity to write my thesis on such an interesting and personal topic. I
am further thankful to Prof. Dr.-Ing. Stefan Kowalewski for kindly agreeing to take
on the task of second examination.

My thanks go out to the many members of the Roboterclub Aachen e.V. for getting
me interested in embedded software and always pushing me to find solutions to tricky
problems in our libraries their tooling. I also would like to thank my co-maintainers
of the modm project, Raphael Lehmann and Christopher Durand, for sharing a
vision to improve the state of embedded software development and steadily working
to bring it to reality.

Finally, I would like to thank my family and friends for their support during this
thesis and especially my parents for their unwavering encouragement and care during
these challenging times.

Contents

1 Introduction 1

2 Background 3

2.1 Technical Documentation . 3

2.2 Table Processing . 6

2.3 Hardware-dependent Software . 10

2.3.1 Accessing Hardware in Software 12

2.3.2 Common Microcontroller Software Interface Standard 16

2.3.3 Configuration Tools . 16

2.3.4 New Programming Languages 20

2.4 Knowledge Modeling . 21

3 Related Work 25

3.1 Document Information Extraction . 25

3.1.1 Table Detection . 26

3.1.2 Table Understanding . 28

3.2 Hardware Description Data Pipelines 29

3.3 Generating Hardware-dependent Software 30

4 Problem Statement 33

4.1 Porting Hardware-dependent Software 33

4.1.1 Boot Firmware . 34

4.1.2 Hardware Abstraction . 35

4.1.3 Device Drivers . 37

4.1.4 Board Support Package . 38

4.1.5 Configuration Tools and Build Systems 38

4.1.6 Testing and Simulation . 39

4.1.7 Specialized Hardware Abstraction Layers 40

4.2 Challenges . 42

4.3 Existing Work . 43

4.3.1 Information Extraction . 43

4.3.2 Data Pipelines . 44

4.3.3 Embedded Software . 44

4.4 Problem Statement . 46

4.5 Contributions . 47

5 Design 49

5.1 Modular Data Processor Overview 49

5.2 Data Processing Pipelines . 50

5.2.1 Importing Vendor Data . 51

5.2.2 Converting PDF to HTML . 51

5.2.3 Converting HTML to OWL 52

5.2.4 Converting HTML to SVD . 54

5.2.5 Converting Header Files to SVD 54

5.2.6 Converting SVD to OWL . 55

5.2.7 Converting Tooling Data to OWL 55

5.2.8 Evolving OWL . 56

5.3 Accessing OWL . 57

6 Implementation 59

6.1 Data Processing Pipelines . 59

6.1.1 Importing Vendor Data . 59

6.1.2 Accessing PDF . 60

6.1.3 Converting PDF to HTML . 61

6.1.4 Accessing HTML . 64

6.1.5 Converting HTML to OWL 65

6.1.6 Converting HTML to SVD . 67

6.1.7 Converting Header Files to SVD 69

6.1.8 Converting SVD to OWL . 70

6.1.9 Converting Tooling Data to OWL 70

6.1.10 Evolving OWL . 70

6.2 Accessing OWL . 71

7 Evaluation 73

7.1 Evaluation Setup . 73

7.1.1 Input Sources . 73

7.1.2 Conversion Artifacts . 74

7.2 Pipeline Performance . 75

7.3 Implementation Effort . 76

7.4 Quality of Extracted Data . 77

7.4.1 PDF to HTML Conversion . 78

7.4.2 Device Identifiers . 79

7.4.3 Interrupt Vector Table . 80

7.4.4 Package and Pinout . 81

7.4.5 Pin Functions . 81

7.4.6 Register Descriptions . 84

7.5 Discussion . 92

8 Conclusion 95

8.1 Conclusion . 95

8.2 Future Work . 96

Bibliography 99

A Appendix 109

A.1 List of Abbreviations . 109

1
Introduction

With an ever expanding product catalog of embedded hardware comes the challenge
of porting the corresponding hardware-dependent software (HdS) stack to thousands
of devices [EMD09]. Hardware vendors typically provide a HdS implementation in
the C programming language only, since it is de-facto standard for writing embedded
software [EMD09]. However, newer compiled languages [modm09, rust17a] and opti-
mized dynamic language runtimes [mpy14, ZB21] bring new programming paradigms
and features to resource-limited embedded systems that are simply not supported
by C. Unless these new projects can reuse the vendor’s HdS stack, they have to write
their own, which can be a very time consuming task [Kor18, EMD09].

Porting HdS is mostly a manual process, where a software engineer consults the
technical documentation of the device to inform design and implementation decisions
[EMD09]. In addition, device-specific hardware description data must be extracted
from the documentation and converted into code [EMD09]. However, the technical
documentation is often only available in portable document format (PDF), which
complicates the extraction of structured data [EHLN06, Ras17] due to its print-
oriented content model, rather than a semantic one [pdf08]. As a result, the porting
process requires a lot of manual labor [EMD09], which slows down these new projects.

To alleviate these limitations, some projects make use of model-driven software en-
gineering [modm09, rust17a, rust20, rust16, ada15] to code generate large parts of
their HdS stack. The data required to feed the generators is extracted from machine-
readable sources such as standardized formats [svd15b], proprietary databases from
tooling [stm08], or provided by manually curated datasets [i2c11, Fel20]. However,
the scope and fidelity of this data is limited to what the vendor publishes, which
is usually significantly less than what is available in the technical documentation
[modm16, rust20].

Existing work in the field of document information extraction focuses almost ex-
clusively on universal inputs using heuristic approaches to recognize tables in a
variety of document formats [EHLN06, KLU15]. Most existing solutions ignore vec-
tor graphics in the PDF and instead focus only on the whitespace analysis of text

2 1. Introduction

to detect structured content such as tables and figures, which can lower their accu-
racy [RCVF03, CF04, RPS16, SAM+18, RPS+18]. Since the style and formatting
of technical documentation from a specific vendor is known beforehand, a tuned
parser guided by both the vector graphics and text can be easier to implement and
yield more accurate results [RCVF03, CF04, CD16]. Once the technical documen-
tation content is accessible, it needs to be understood semantically and converted
into a useful data format. For generic input, the domain is usually not known in
advance, thus the semantics are derived either from the document itself using heuris-
tics [Ras17, AS13], informed by an external ontology [CHCG15], or manually defined
[EHLN06]. However, the results can be much less accurate [EHLN06] than when a
domain expert guides the content interpretation.

To address these challenges, we design and implement a data processor that accesses
technical documentation using table processing and text mining in several modular
pipelines. The documentation data is converted using bespoke algorithms written
by a domain expert and then merged with machine-readable sources to create the
most complete and accurate dataset possible. By combining multiple sources with
different device resolutions and data fidelity, we compensate for both while detecting
and arbitrating conflicts in a controlled strategy. The resulting data is then encoded
unambiguously as a knowledge graph with a custom ontology describing the em-
bedded hardware semantics and a lightweight software wrapper to provide simple
data access to code generators. We use our pipeline to extract the interrupt vector
table, package and pinout, pin functions, and register descriptions for almost 3000
microcontrollers from STMicro.

We evaluate the performance, implementation effort, and data quality of our techni-
cal documentation processor by comparison with the machine-readable data sources.
Our implementation extracts and merges data from over 124 thousand PDF pages
of documentation in about 2.5 h on consumer hardware while achieving an average
of 96.5% data similarity compared to the machine-readable sources. We give a de-
tailed analysis for the remaining data conflicts informed by an in-depth inspection
of the sources to formulate the best strategy for arbitrating these conflicts. For the
register description data, we successfully apply majority voting to resolve 45–64% of
conflicts automatically. These results demonstrate that our pipeline extracts data
from the technical documentation with a high quality and resolution, thus providing
the necessary foundation to enable HdS porting via code generation. Future work
can build on our processor design to support many more embedded software use
cases that depend on data only available in the technical documentation.

This thesis is organized as follows. In Chapter 2, we present the background knowl-
edge that is required for the understanding of the remainder of this thesis. In par-
ticular, we introduce the PDF format, table processing paradigms, define the HdS
stack with standardized formats and tooling, and approaches to knowledge mod-
eling. Chapter 3 contains a description of related work on document information
extraction, existing data pipelines, and code generators for embedded software. In
Chapter 4, we introduces our scenario of porting HdS to a new microcontroller and
discuss why the related work is not sufficient to address the associated challenges.
Chapter 5 describes our pipeline design. We explain the implementation of our de-
sign in Chapter 6. Afterward, we evaluate the performance, implementation effort,
and resulting data quality of our pipeline in Chapter 7. Chapter 8 concludes this
thesis.

2
Background

Our work investigates the quality of hardware description data required for creating
embedded software and tries to improve on it. Therefore, we provide an introduction
into these topics in this chapter. First, in Section 2.1, we give an overview of the
available technical documentation and its data format. Subsequently, in Section 2.2,
we introduce table processing paradigms that can extract tabular data from such
documentation. Then, in Section 2.3, we discuss the functionality of the hardware-
dependent software stack and show which data sources already exists that describe
the low-level hardware. We conclude this chapter in Section 2.4 with a look at
knowledge modeling specifically through knowledge graphs in the context of the
semantic web.

2.1 Technical Documentation

When designing a product with electronic components, hardware engineers typically
start with a rough sketch of the required components and their interaction and
perhaps even build a prototype with any hardware they have at hand [Kul17]. As
the requirements become more clear and a custom design is started, the specific
components need to be picked [Kul17]. In this manual process, the engineer consults
the technical documentation of a set of chosen plausible parts to evaluate whether
they satisfy the design criteria [Kul17].

For simple mechanical or passive electronic components such as resistors, capacitors,
and connectors, a datasheet with only a few pages is sufficient to describe the electric
characteristics, such as voltage and current requirements under various conditions,
and physical properties, such as shapes, dimensions, pinouts, and footprints, as well
as fulfillment of relevant standards in the electronic space [Kul17]. However, for
complex active electronic components like microcontrollers, documents with thou-
sands of pages each are common to describe the specialized internal functionality
and their interaction with the external components via (de-facto) standardized in-
terfaces [Kul17]. Such large documents can be split up into multiple parts to reduce

4 2. Background

Datasheet DS13135

Datasheet DS13195

Datasheet DS13196

Reference Manual
RM0455

Errata Sheet
ES0478

Programming Manual
RM0253

ARM Cortex-M7
Technical Reference

Manual

Figure 2.1 This directed graph show the references within a group of related documents de-
scribing the STM32H7A3/B0/B3 microcontroller family, with the Reference Manual [RM0455]
alone accounting for almost 3000 out of the almost 4000 total pages [DS13139, DS13195,
DS13196, ES0478, PM0253]. The technical documentation for all STM32 microcontrollers is
split up into multiple such related files per device grouping.

duplication, especially since complex electronic products typically share and reuse
a lot of common hardware [Kul17]. For example, STM32 microcontrollers manufac-
tured by STMicro are based on the ARM Cortex-M microprocessor described in the
Programming Manual and ARM Cortex-M Technical Reference Manual, with a set
of common peripherals detailed in the Reference Manual. Devices are arranged in a
number of combinations and packages as described in the Datasheet, with any flaws
in their design listed in the Errata Sheet, as visualized in Figure 2.1.

Hardware vendors publish the technical documentation of their products almost ex-
clusively as portable document format (PDF) files accessible without limitations
through the vendor (e.g. st.com) or distributor (e.g. digikey.com) website. PDF doc-
uments are a print-oriented format and describe their content as a stream of graphical
and textual object that are placed at precise positions inside the document canvas
[pdf08]. As a result, documents look and print the same on all platforms, however,
all semantic and hierarchical information is lost, which makes it difficult to parse
and convert automatically [Ras17]. In this work, we look at PDF documentation
from STMicro, whose style is limited to specific formatting building blocks, three of
which we describe in more detail next: text, figures, and tables.

Figure 2.2 shows a chapter introduction of the cyclic redundancy check (CRC) pe-
ripheral, shortly describing its functionality in textual form and then listing its
features as bullet points. Notice how the superscript for X32+X26... is created by
placing smaller letters higher in this line of text. Similarly, the heading characters
differ only in font size and boldness and the list uses an explicitly placed • character
with an indent to denote a new (multi-line) list item. While the structural semantics
of this short excerpt may seen obvious to humans, it is difficult to accurately infer
the specific formatting of PDF documents using a generalized, heuristic approach,
due to its lack of explicit semantic hints [Ras17, SAM+18].

The STMicro technical documentation also contains a lot of graphical figures that
supplement the text and tables with additional understanding. While Figure 2.3 is
easy for humans to interpret as a function block diagram, the variety of figure styles,
each mixing vector graphics and text differently, can make it very difficult for an
algorithm to convert such figures into a structured form [CD16].

These format limitations are particularly noticeable for tabular data, which is ren-
dered using a combination of vector graphics to draw the table cells and individually
placed text characters as visualized in Figure 2.4.

https://www.st.com
https://www.digikey.com

2.1. Technical Documentation 5

17 Cyclic redundancy check calculation unit (CRC)

17.1 Introduction

The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from 8-, 16-

or 32-bit data word and a generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or

storage integrity. In the scope of the functional safety standards, they offer a means of

verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of

the software during runtime, to be compared with a reference signature generated at link

time and stored at a given memory location.

17.2 CRC main features

• Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X +1

• Alternatively, uses fully programmable polynomial with programmable size (7, 8, 16, 32

bits)

• Handles 8-,16-, 32-bit data size

Figure 2.2 This reference manual excerpt shows a chapter heading followed by a section
heading with two paragraphs of text. After the next section heading, a bullet point list begins.
The bounding boxes of text characters are shown in red with their origins marked by a black
cross [RM0432].

Data register

(output)

read access

Data register

(input)

write access

32-bit AHB bus

crc_hclk

CRC computation

32-bit accesses

CRC_INIT

CRC_CR

CRC_POL

CRC_IDR

Figure 2.3 The function block diagram of the CRC peripheral showing the relation of the bus
and registers. The bounding boxes of the glyphs are shown in red with their origin marked
with a black cross, while the graphics are shown in blue. Note the different styles and sizes of
arrows in this diagram, which are all explicitly drawn using vector lines [RM0432].

When trying to extract data from such tables without taking the graphics layer into
consideration, inferring table layout relies on heuristics applied to the text positions
only, which can limit accuracy severely [Ras17, SAM+18, CF04]. In contrast, de-
terministic algorithms primarily guided by the graphics layer produce very accurate
and reliable results [RCVF03].

The list in Figure 2.2 can also be interpreted as a table with an implicit header row
CRC main features and underneath a row for every bullet point. However, the list
is heavy on text, requiring a semantic analysis on the grammar itself to make its
content accessible to an algorithm [LKM01, CHCG15].

6 2. Background

J3 52 34 26 PB13 I/O TTa (4)
SPI2_SCK,I2S2_CK,USART3

_CTS, TIM1_CH1N,

TSC_G6_IO3, EVENTOUT

ADC3_IN5, COMP5_INP,

OPAMP4_VINP,

OPAMP3_VINP

J2 53 35 27 PB14 I/O TTa (4)

SPI2_MISO,I2S2ext_SD,

USART3_RTS_DE,

TIM1_CH2N, TIM15_CH1,

TSC_G6_IO4, EVENTOUT

COMP3_INP, ADC4_IN4,

OPAMP2_VINP

H4 54 36 28 PB15 I/O TTa (4)

SPI2_MOSI, I2S2_SD,

TIM1_CH3N, RTC_REFIN,

TIM15_CH1N, TIM15_CH2,

EVENTOUT

ADC4_IN5, COMP6_INM

- 55 - - PD8 I/O TTa (1) USART3_TX, EVENTOUT ADC4_IN12, OPAMP4_VINM

(1)

Table 13. STM32F303xB/STM32F303xC pin definitions (continued)

Pin number

Pin name

(function

after

reset) P
in

 t
y
p

e

I/
O

 s
tr

u
c

tu
re

N
o

te
s

Pin functions

W
L

C
S

P
1
0
0

L
Q

F
P

1
0

0

L
Q

F
P

6
4

L
Q

F
P

4
8

Alternate functions Additional functions

Figure 2.4 This table excerpt shows the bounding boxes of the individual glyphs in red with
their origin marked with a black cross. Inter-document links like the footnote markers in the
Notes column are marked with a green box. The actual table is drawn in the graphics layer
with individual paths marked in blue. Note that the table caption contains (continued), since
this particular table is very long and is therefore split over multiple document pages [DS9118].

Rather than a full understanding of all unstructured textual descriptions in the
STMicro technical documentation, which enters the domain of text mining, we in-
stead focus more on extracting and processing data from tables next.

2.2 Table Processing

Table processing exists at the intersection of several decades-old research commu-
nities that deal with extracting data from untagged, but semi-structured input to
edit, convert, and format it into semantically valuable information [EHLN06]. Tables
present multi-dimensional information in a two-dimensional rendering whose seman-
tic interpretation requires additional information usually present in the context of
the table [Hur00].

In their simplest form, tables can be rendered as a row-column structure of cells
representing an array of data [Wan96, Hur00]. However, tables express and amend
information presented in text form and therefore include implicit hierarchical infor-
mation as part of their formatting [Hur00, EHLN06]. The visual rendering of tables
includes using different text, separator, and border styles, spanning cells spread over
multiple rows and/or columns, cells with multi-line content, and even the splitting
of the entire table into multiple parts to help fit into the presentation medium di-
mensions, usually a printable page or a digital display [Wan96, Ras17]. For clarity,
we describe table formatting with the terminology defined in Figure 2.5.

2.2. Table Processing 7

Peripheral

requests
Stream 0 Stream 1 Stream 2 Stream 3 Stream 4 Stream 5 Stream 6 Stream 7

Channel 0 SPI3_RX SPDIFRX_DT SPI3_RX SPI2_RX SPI2_TX SPI3_TX SPDIFRX_CS SPI3_TX

Channel 1 I2C1_RX I2C3_RX TIM7_UP - TIM7_UP I2C1_RX I2C1_TX I2C1_TX

Channel 2 TIM4_CH1 - FMPI2C1_RX TIM4_CH2 - FMPI2C1_TX TIM4_UP TIM4_CH3

Channel 3 -
TIM2_UP

TIM2_CH3
I2C3_RX - I2C3_TX TIM2_CH1

TIM2_CH2

TIM2_CH4

TIM2_UP

TIM2_CH4

Channel 4 UART5_RX USART3_RX UART4_RX USART3_TX UART4_TX USART2_RX USART2_TX UART5_TX

Channel 5 - -
TIM3_CH4

TIM3_UP
-

TIM3_CH1

TIM3_TRIG
TIM3_CH2 - TIM3_CH3

Channel 6
TIM5_CH3

TIM5_UP

TIM5_CH4

TIM5_TRIG
TIM5_CH1

TIM5_CH4

TIM5_TRIG
TIM5_CH2 - TIM5_UP -

Channel 7 - TIM6_UP I2C2_RX I2C2_RX USART3_TX DAC1 DAC2 I2C2_TX

Stub Head Boxhead

Stub Body

Row

Cell Column

Boxhead separation

Stub separation

Figure 2.5 The terminology for the structural parts of a row-column table according to Wang
[Wan96]. This DMA trigger table maps peripheral events in the body to streams in the boxhead
and channels in the stub [RM0390]. Note that the stub column and boxhead row are chosen
depending on the logical table structure, rather than the physical locations of left and top
respectively. Long tables may choose to repeat the boxhead row, while others may place the
stub in the middle or duplicate it again on the right.

Figure 2.4 depicts a table whose boxhead is indicated by bold text and a bold border,
called the boxhead separator, and is organized hierarchically for the pin number and
pin functions. However, the stub head of the table is actually the pin name, instead
of the pin number on the left, since the pin number can be empty for some packages,
as indicated by “-” for the LQFQ48 package in the fourth row. Additional context
is required to know that TTa is an abbreviation for 3.3V tolerant analog I/O

structure and that (1) and (4) refer to footnotes that are rendered as a numbered
list underneath the table. Note the use of multi-line cells to fit the list of alternate pin
functions, however, with an inconsistent use of line breaks even within words. The
caption of the table includes (continued) since the table is very long and needed to
be split up across multiple PDF pages and the caption and header row is duplicated
to aid with comprehension. A conversion algorithm for these tables would first have
to merge them back into one big table, removing the duplicated headers, then map
the pin name to its pin number and a list of pin functions, while also interpreting
the footnotes correctly.

To work with tables more comfortably, an abstraction that separates the logical
structure from its layout structure is needed. The Wang abstract model introduces a
topology defining the composition of the table headers, an abstract indexing relation
for accessing the table content, a set of editing operations, and optional formatting
attributes describing the presentation [Wan96].

To describe the logical table topology, Wang [Wan96] defines a labeled domain as a
labeled empty set or a labeled set of labeled domains. The labeled domain can be
visualized by a tree of labels, where each node is called an item that can be uniquely
identified by the label sequence of its path from the root. A leaf node in this tree is
called frontier label and identifies a labeled domain with an empty set. Figure 2.6
exemplifies these relationships for the previously mentioned table in Figure 2.4.

8 2. Background

Boxhead labeled domains:

(Number, {(WLCSP100, ∅), (LQFP100, ∅), (LQFP64, ∅), (LQFP48, ∅)}),
(Function, {(Alternate, ∅), (Additional, ∅)}),
(Structure, ∅),
(Type, ∅),
(Notes, ∅).

Stub labeled domain:

(Name, {(PB13, ∅), (PB14, ∅), (PB15, ∅), (PD8, ∅)}).

Figure 2.6 The simplified labeled domains for Figure 2.4 split between boxhead and stub.
Notice how the labels are independent from the order of the rows and columns of the table, it
only describes the logical structure.

Using this topology, Wang [Wan96] defines the indexing relation as a partial function
δ that maps from a set of frontier items from different labeled domains to a table
entry, also called attribute-value pairs in later works [Hur00, EHLN06]. While the
abstract model can only describe tables with a regular, multi-dimensional logical
structure [Wan96], and therefore is not generally applicable to more exotic table
formatting options, all the tables in the STMicro technical documentation conform
to such a regular logical structure.

Listing 2.1 describes the first row of the table in Figure 2.4 via such attribute-value
pairs. Note that the content of the cells is not modified, as such the line break inside
USART3_CTS is maintained as well as the superscript and the link of the footnote.

A subsequent algorithm would clean up this data by removing the line breaks cor-
rectly, splitting up the pin function string into a list, and resolving the footnotes
before converting this information into another representation. For example, the
Python dictionary from Listing 2.2 removes the “-” Number entries for PD8, resolves
the footnotes into text, and splits and merges the values of Structure into Type.

However, any further interpretation and transformation of this data requires more
than just a structural understanding informed by the table layout, it requires domain
knowledge about the content of the table. Therefore, we introduce the topic of
hardware-dependent software next.

2.2. Table Processing 9

δ({Name.PB13, Number.WLCSP100}) = J3;

δ({Name.PB13, Number.LQFP100}) = 52;

δ({Name.PB13, Number.LQFP64}) = 34;

δ({Name.PB13, Number.LQFP48}) = 26;

δ({Name.PB13, T ype}) = I/O;

δ({Name.PB13, Structure}) = TTa;

δ({Name.PB13, Notes}) = (4) (including reference);

δ({Name.PB13, Function.Alternate}) = SPI2_SCK,I2S2_CK,USART3

_CTS, TIM1_CH1N,

TSC_G6_IO3, EVENTOUT;

δ({Name.PB13, Function.Additional}) = ADC3_IN5, COMP5_INP,

OPAMP4_VINP,

OPAMP3_VINP;

Listing 2.1 The partial function δ maps the attribute-value pairs for the first row of Figure 2.4.

1 pins = {

2 "PB13": {

3 "Number": {

4 "WLCSP100": "J3",

5 "LQFP100": 52,

6 "LQFP64": 34,

7 "LQFP26": 26,

8 },

9 "Type": ["I/O", "3.3V", "Analog"],

10 "Notes": ["Fast ADC Channel"],

11 "Functions": {

12 "Alternate": ["SPI2_SCK", "I2S2_CK",

13 "USART3_CTS", "TIM1_CH1N",

14 "TSC_G6_IO3", "EVENTOUT"],

15 "Additional": ["ADC3_IN5", "COMP5_INP",

16 "OPAMP4_VINP", "OPAMP3_VINP"],

17 },

18 },

19 "PD8": {

20 "Number": {"LQFP100": 55},

21 "Type": ["I/O", "3.3V", "Analog"],

22 "Functions": {

23 "Alternate": ["USART3_TX", "EVENTOUT"],

24 "Additional": ["ADC4_IN12", "OPAMP4_VINM"],

25 },

26 }

27 }

Listing 2.2 A possible Python dictionary of data derived from Figure 2.4.

10 2. Background

S
of

tw
ar

e

Application

Middleware Board Support
H

ar
d
w

ar
e-

d
ep

en
d
en

t
S
of

tw
ar

e Operating
System

Communication Protocols

Device Drivers

Boot
Firmware

Hardware Abstraction Layer

H
ar

d
w

ar
e General Purpose

Input/Output
Timer, Interrupt,

Power, Clock, Debug
CPU Memory

System Bus

Figure 2.7 The simplified software stack of a typical hardware-dependent software (HdS)
architecture [EMD09]. This thesis focuses on the hardware description, hardware abstraction
layer, boot firmware, device drivers and board support.

2.3 Hardware-dependent Software

As the name suggests, embedded system requirements derive from the embedding
system [EMD09]. Therefore, in practice, the variety in embedded software is rather
large and can include a lot of different hardware and software configurations [EMD09].
In this thesis we focus on software running on microcontrollers only, especially on
the ARM Cortex-M architecture due to its large feature set and immense popular-
ity. However, our work applies to other microcontroller architectures likes AVR,
MSP430, Xtensa and RISC-V, and, to a lesser extend, also to more fully featured
embedded designs like the ARM Cortex-A-based Raspberry Pi.

Hardware-dependent software (HdS) consists of the lowest layers in an embedded
system that directly interact with the underlying hardware and provide an abstrac-
tion to the application software ideally via a portable interface that is the same on
different hardware [BBA17, Kor18]. In doing so, the HdS can only implement a
system functionality together with the underlying hardware and would loose their
utility without this dependence [EMD09]. Figure 2.7 depicts layers of varying degree
of hardware specialization of a conceptual and simplified HdS architecture. Embed-
ded software running on microcontrollers typically do not implement every layer as
the abstraction can be too expensive for smaller devices or simply unnecessary for
the scope of the application [BBA17, Kor18]. However, the more capable the hard-
ware and the more complex the application becomes, the more abstraction layers
can help reuse large parts of the stack [EMD09, BBA17, Kor18]. The common layers
in a HdS software stack are the following:

2.3. Hardware-dependent Software 11

The hardware abstraction layer (HAL) is where the knowledge of the technical doc-
umentation is converted into embedded software for the first time and the design
decisions of this abstraction layer greatly influence the rest of the system [EMD09].
It provides language bindings for accessing register and internal memories and func-
tional shims for small differences in hardware implementations [EMD09].

Microcontroller boot firmware does not generally conform to standardized appli-
cation programming interfaces (APIs), such as the basic I/O system (BIOS) or the
more recent unified extensible firmware interface (UEFI), and instead delegates them
to the application firmware called directly by the reset interrupt to prepare the envi-
ronment before jumping into the main() function [EMD09]. If a bootloader is used,
its feature set usually varies greatly from simple unauthenticated wired connections
to complex, authenticated over-the-air firmware update [boot17].

Device drivers provide access to internal peripherals and external hardware through
a set of standardized functions to configure the device and read/write data from/to
it [EMD09, BBA17]. These drivers depend on the HAL and can vary between dif-
ferent microcontroller projects, since there is no standard defined for them [EMD09,
BBA17, Kor18].

Communication protocols are built on top of the device drivers and typically con-
form to complex external standards such as TCP/IP over Ethernet [EMD09] or
industry protocols built on top of specialized peripherals such as the controller area
network (CAN). These stacks benefit dramatically from a deep integration of spe-
cialized hardware for media access control (MAC) and direct memory access (DMA)
to accelerate data handling [EMD09].

The real-time operating system (RTOS) typically refers to a stackful threading
implementation such as the very popular FreeRTOS [rtos03], which is ported to
over 30 microcontroller architectures. Using an RTOS is considered good practice
for complex embedded applications as it provides well known communication and
resource sharing primitives between threads to help with the reuseability of existing
embedded software [EMD09, BBA17, Kor18]. However, simple polling- or interrupt-
based scheduling implementations can also be very effective on small devices, making
the use of an RTOS optional as well [rust17b, EMD09].

Finally, the board support packages configure the HdS layers for the specific hard-
ware setup, while the middleware provides application-specific services as an adapter
layer between the RTOS and the application, which implements the overall func-
tionality of the embedded system [EMD09].

In this thesis we focus on generating parts of the HdS stack, specifically the hard-
ware description, the HAL, boot firmware, device drivers, and board support using
data derived from the technical documentation via table processing. In order to un-
derstand the type of data required for this task, we introduce how the HdS accesses
the underlying hardware in the next section.

12 2. Background

2.3.1 Accessing Hardware in Software

Modern microcontrollers such as the STM32 series from STMicro are built around
the ARM Cortex-M microprocessors by adding specialized memories and hardware
peripherals to a standardized internal bus connection at a specific address in a uni-
fied 32-bit address space. This modular approach maps the configuration of the
peripherals as registers into the address space of the microprocessor, hence the name
memory-mapped input/output (MMIO) register access. The same load and store
instructions that can access internal memories can also access peripheral registers
regardless of their number, type, and feature set [EMD09]. An example of a complex
microcontroller with many peripherals accessible via MMIO registers is visualized in
Figure 2.8.

For example, the previously discussed Figure 2.2 provides a short textual descrip-
tion of the cyclic redundancy check (CRC) peripheral, which is visualized as the
function block diagram in Figure 2.3 with two data and four configuration registers
all connected to a 32-bit bus interface. To access these registers we need to know
their specific addresses, for which we need to combine the CRC peripheral bound-
ary address 0x40023000 found in the table from Figure 2.9 with the register offsets
in the summary view from Figure 2.10. The specific register layout, initial value,
and functional description of each bit is documented separately again. For example,
Figure 2.11 describes the control register CRC_CR.

Combining this knowledge, we can interpret the reset values of the CRC_INIT =
0xFFFFFFFF and CRC_POL = 0x04C11DB7 as a default configuration for CRC-32 (Eth-
ernet). Writing a 8-bit value into CRC_IDR will update the CRC computation and
output the result in CRC_DR. To change the default CRC configuration to CRC-16-
CCITT, we first write its polynomial 0x1021 as a 32-bit value to CRC_POL at address
0x40023000 + 0x14, then update the polynomial size to 16-bit and reset the periph-
eral using a read-modify-write operation on CRC_CR at address 0x40023000 + 0x08

to preserve the value of the reversal options. Listing 2.3 achieves MMIO register
access in plain C by casting the address to a volatile pointer of the correct width
and then de-referencing it for read or write access.

Even though MMIO registers are a very simple and elegant hardware solution that
can be natively implemented even in “high-level” languages such as C without re-
quiring special treatment, having to manually compute all the register addresses,
correct types, and bit-offsets and translate them into C code is not very user-friendly.
Therefore, vendors publish generated language bindings that provide these register
definitions as C header files, that follow a format standardized by ARM, which we
introduce next.

2.3. Hardware-dependent Software 13

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),

4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0
 M

H
z
 (

m
a
x
)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),

4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /

SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK

CTS, RTS as AF

RX, TX, SCK, CTS,

RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as

AF F
IF

O

LCD_R[7:0], LCD_G[7:0],

LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it
 A

X
I

B
U

S
-M

A
T

R
IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU

Cortex-M7

480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache

 16KB

D-Cache

 16KB

I-TCM

 64KB

D-TCM

 64KB

16 Streams

FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir

SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,

CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER

MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1

128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,

NXT,ULPI:CK

, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2
 (

2
0
0
M

H
z
)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4
 (

2
0
0
M

H
z
)

BDMA

DMA

Mux2

Up to 20 analog inputs

common to ADC1 & 2

HSEM

A
H

B
4
 (

2
0
0
M

H
z
)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC

Reset &

control

OSC32_IN

OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS

RTC_TAMP[1:3]

RTC_OUT

RTC_REFIN

VDDMMC33 = 1.8 to 3.6V

VDDUSB33 = 3.0 to 3.6 V

VDD = 1.8 to 3.6 V

VSS

VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,

LPTIM1_OUT as AF

OPAMPx_VINM

OPAMPx_VINP

OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x

HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,

DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),

2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),

1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),

1 chan. (TIM17_CH1, BKIN as AF

SDMMC_

D[7:0],

CMD, CK as AF

Up to 17 analog inputs

common to ADC1 and 2

SD, SCK, FS, MCLK,

D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,

COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM

 64KB

AHB/APB

Quad-SPI

128 KB

FLASH

512 KB AXI

SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],

CK[2:1] as AF F
IF

O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /

SDO, SDI, CK, WS, MCK, as AF
SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA
USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
 (

m
a

x
)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /

SDO, SDI, CK, WS, MCK, as AF
SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA

Mux1

To APB1-2

peripherals

SRAM2

128 KB

SRAM3

32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /

SDO, SDI, CK, WS, MCK, as AF
SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM

I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC

Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage

regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and

LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,

VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0
 M

H
z
 (

m
a
x
)

A
P

B
4

 1

0
0
 M

H
z
 (

m
a
x
)

A
P

B
4

 1

0
0
 M

H
z
 (

m
a
x
)IWDG

Temperature
sensor

HASH

3DES/AES

Figure 2.8 The block diagram of the high-performance STM32H750 microcontroller showing
all specialized hardware blocks with their external signals connected to the internal peripheral
APB bus colored dark gray connected via bus bridges in blue to the faster AHB bus in light
gray. Only bus masters like the ARM Cortex-M7 in the top left and the DMA peripherals in
green are allowed to initiate accesses to these busses. Notice how the internal volatile memories
colored in yellow and DMA peripherals are connected to many different busses to enable parallel
distributed operation [DS12556].

14 2. Background

AHB1

0x4002 F000 - 0x47FF FFFF ~127 MB Reserved -

0x4002 C000 - 0x4002 EFFF 1KB GFXMMU Section 14.5.11: GFXMMU register

map

0x4002 BC00 - 0x4002 BBFF 1 KB Reserved -

0x4002 B000 - 0x4002 BBFF
3 KB DMA2D

Section 13.5.23: DMA2D register

map

0x4002 4400 - 0x4002 AFFF 26 KB Reserved -

0x4002 4000 - 0x4002 43FF 1 KB TSC Section 31.6.11: TSC register map

0x4002 3400 - 0x4002 3FFF 1 KB Reserved -

0x4002 3000 - 0x4002 33FF 1 KB CRC Section 17.4.6: CRC register map

0x4002 2400 - 0x4002 2FFF 3 KB Reserved -

0x4002 2000 - 0x4002 23FF
1 KB

FLASH

registers

Section 3.7.18: FLASH register

map

0x4002 1400 - 0x4002 1FFF 3 KB Reserved -

0x4002 1000 - 0x4002 13FF 1 KB RCC Section 6.4.34: RCC register map

0x4002 0800 - 0x4002 0FFF 2 KB Reserved -

0x4002 0400 - 0x4002 07FF 1 KB DMA2 Section 11.6.7: DMA register map

0x4002 0800 - 0x4002 0BFF
1 KB DMAMUX1

Section 12.6.7: DMAMUX register

map

0x4002 0C00 - 0x4002 0FFF 1 KB Reserved -

0x4002 0000 - 0x4002 03FF 1 KB DMA1 Section 11.6.7: DMA register map

Bus Boundary address
Size

(bytes)
Peripheral Peripheral register map

Figure 2.9 The memory map shows the register boundary address of the CRC peripheral on
bus AHB1 [RM0432]. All addresses are aligned to 1 kB to trade a simpler address decoding in
hardware for a sparse memory map with plenty of Reserved address space [PM0253].

Offset Register

name

3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0x00
CRC_DR DR[31:0]

Reset value 1

0x04

CRC_IDR

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

IDR[7:0]

Reset value 0 0 0 0 0 0 0 0

0x08

CRC_CR

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
e
s
.

R
E

V
_

O
U

T

R
E

V
_

IN
[1

:0
]

P
O

L
Y

S
IZ

E
[1

:0
]

R
e
s
.

R
e
s
.

R
E

S
E

T

Reset value 0 0 0 0 0 0

0x10
CRC_INIT CRC_INIT[31:0]

Reset value 1

0x14
CRC_POL POL[31:0]

Reset value 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 1 0 0 0 1 1 1 0 1 1 0 1 1 0 1 1 1

Figure 2.10 The register map summary of the CRC peripheral [RM0432]. An unused 32-bit
register at offset 0x0C is not rendered and unused bits are marked with Res.

2.3. Hardware-dependent Software 15

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Res. Res. Res. Res. Res. Res. Res. Res.
REV_
OUT

REV_IN[1:0] POLYSIZE[1:0] Res. Res. RESET

rw rw rw rw rw rs

Bits 31:8 Reserved, must be kept at reset value.

Bit 7 REV_OUT: Reverse output data

This bit controls the reversal of the bit order of the output data.

0: Bit order not affected

1: Bit-reversed output format

Bits 6:5 REV_IN[1:0]: Reverse input data

These bits control the reversal of the bit order of the input data

00: Bit order not affected

01: Bit reversal done by byte

10: Bit reversal done by half-word

11: Bit reversal done by word

Bits 4:3 POLYSIZE[1:0]: Polynomial size

These bits control the size of the polynomial.

00: 32 bit polynomial

01: 16 bit polynomial

10: 8 bit polynomial

11: 7 bit polynomial

Bits 2:1 Reserved, must be kept at reset value.

Bit 0 RESET: RESET bit

This bit is set by software to reset the CRC calculation unit and set the data register to the

value stored in the CRC_INIT register. This bit can only be set, it is automatically cleared by

hardware

Figure 2.11 This section on the CRC control register CRC_CR contains detailed descriptions
of the functionality of each bit [RM0432]. Note that the RESET bit can only be set by software
(denoted rs), since it is reset automatically in hardware. Unused bits are marked with Res.

1 // Write CRC -16-CCITT polynomial into CRC_POL

2 *(volatile uint32_t *)0 x40023014 = 0x1021;

3

4 // Read CRC_CR as 8-bit value and configure it

5 uint8_t control = *(volatile uint32_t *)0 x40023008;

6 control &= ~(0b11 << 3); // Reset POLYSIZE only

7 control |= 0b01 << 3; // Set POLYSIZE to 16-bit

8 control |= 0b01; // Set RESET

9 // Write configuration back to CRC_CR

10 *(volatile uint32_t *)0 x40023008 = control;

11

12 // Write 4 bytes of data into CRC_IDR

13 *(volatile uint32_t *)0 x40023004 = 12;

14 *(volatile uint32_t *)0 x40023004 = 34;

15 *(volatile uint32_t *)0 x40023004 = 56;

16 *(volatile uint32_t *)0 x40023004 = 78;

17

18 // Read the computed CRC -16-CCITT from CRC_DR

19 uint16_t crc = *(volatile uint32_t *)0 x40023000;

Listing 2.3 Configuring and computing a CRC-16-CCITT value from four data bytes via the
CRC peripheral in plain C using MMIO register access.

16 2. Background

2.3.2 Common Microcontroller Software Interface Standard

The common microcontroller software interface standard (CMSIS) is developed by
ARM with the intention of providing a standard, lightweight HdS stack for C/C++

based software projects that ARM Cortex-M based microcontroller vendors can ex-
tend and specialize for their own device [arm15]. In practice, CMSIS is a HdS stack
implementation with many sub-projects that can be composed together as needed.
However, in this thesis, we only look at the CMSIS-SVD peripheral register descrip-
tions.

The system view description (SVD) defines a extensible markup language (XML)
format for describing the MMIO registers of peripherals and is the machine-readable
equivalent of the register descriptions in the technical documentation (cf. Section 2.3.1)
[arm15]. These files are intended to be used by a debugger to map addresses in
the firmware to register names and documentation for better human understanding
[arm15]. A simplified encoding for the CRC_CR register (cf. Figure 2.11)) is shown in
Listing 2.4. The SVD files from most vendors including STMicro are aggregated in
the cmsis-svd repository [svd15a].

The SVD files are also intended to be converted into C language bindings using a
closed-source conversion program called SVDConv provided by ARM [svd15d]. The
resulting C header files use a C struct of volatile members to describe the peripheral
registers and then cast the peripherals address to this address. Unused space in
the peripheral register file is filled with RESERVED fields which are not supposed to
be accessed [svd15d]. The individual register bits are generated as C pre-processor
(CPP) macros with a clear naming scheme [svd15d]. Listing 2.5 contains the C
header output for the SVD definitions in Listing 2.4, which significantly simplify
accessing the CRC peripheral registers in plain C. However, clearing and setting
individual bits is still a manual process as can be seen in Listing 2.6.

This form of MMIO register access is the de-facto standard for all C based HALs
due to the simplicity of the header files that works well even with older, proprietary
compilers [arm15]. However, there are more tools than the SVDConv utility that try
to reduce the complexity of writing embedded software, which we will discuss in the
next section.

2.3.3 Configuration Tools

In addition to CMSIS, vendors also publish custom tooling for their specific products.
This can range from custom, stand-alone graphical user interface (GUI) applications
to proprietary integrated development environments (IDEs) with a tuned toolchain
for the architecture. A corresponding example is the STM32CubeMX [stm08] tool
from STMicro written in Java that allows the developers to connect peripheral sig-
nals to pins as shown in Figure 2.12, configure the clock system, estimate power
consumption, and finally generate a complete HdS stack for the specific device.

2.3. Hardware-dependent Software 17

1 <peripheral >

2 <name>CRC</name>

3 <baseAddress >0x40023000 </baseAddress >

4 <registers >

5 <register >

6 <name>CR</name>

7 <addressOffset >0x08</addressOffset >

8 <size>32</size>

9 <resetValue >0x00000000 </resetValue >

10 <fields >

11 <field>

12 <name>REV_OUT </name>

13 <bitOffset >7</bitOffset >

14 <bitWidth >1</bitWidth >

15 <access >read -write</access >

16 </field>

17 <field>

18 <name>REV_IN </name>

19 <bitOffset >5</bitOffset >

20 <bitWidth >2</bitWidth >

21 <access >read -write</access >

22 </field>

23 <field>

24 <name>POLYSIZE </name>

25 <bitOffset >3</bitOffset >

26 <bitWidth >2</bitWidth >

27 <access >read -write</access >

28 </field>

29 <field>

30 <name>RESET</name>

31 <bitOffset >0</bitOffset >

32 <bitWidth >1</bitWidth >

33 <access >write -only</access >

34 </field>

35 </fields >

36 </register >

37 </registers >

38 </peripheral >

Listing 2.4 An shortened excerpt of the CMSIS-SVD definitions for the CRC_CR register. Note
the write-only RESET bit access type, which is reset automatically in hardware [svd15a].

The STM32CubeMX application uses an internal XML database that contains a
machine-readable version of the pin definitions in the technical documentation (cf.
Section 2.1) and is published by STMicro in the public repository [stm20]. For
example, the alternate functions of pin PB13 from the first row in Figure 2.4 are
encoded in Listing 2.7.

The STM32CubeMX tool allows for more configuration options such as power set-
tings, internal clock configuration and middleware configurations using the same in-
ternal database. Once the user has configured the entire microcontroller as required

18 2. Background

1 // Register layout definition for the CRC peripheral

2 typedef struct

3 {

4 volatile uint32_t DR; // Data Register

5 volatile uint32_t IDR; // Independent Data Register

6 volatile uint32_t CR; // Control Register

7 uint32_t RESERVED; // offset 0xC

8 volatile uint32_t INIT; // Initial CRC Value Register

9 volatile uint32_t POL; // Polynomial Register

10 } CRC_TypeDef;

11

12 // Address definition for the CRC peripheral

13 #define CRC ((CRC_TypeDef *)0 x40023000)

14

15 // Bit definition for CRC_CR register

16 #define CRC_CR_RESET (0x1 << 0)

17

18 #define CRC_CR_POLYSIZE_0 (0x1 << 3)

19 #define CRC_CR_POLYSIZE_1 (0x2 << 3)

20 #define CRC_CR_POLYSIZE (0x3 << 3)

21

22 #define CRC_CR_REV_IN_0 (0x1 << 5)

23 #define CRC_CR_REV_IN_1 (0x2 << 5)

24 #define CRC_CR_REV_IN (0x3 << 5)

25

26 #define CRC_CR_REV_OUT (0x1 << 7)

Listing 2.5 An simplified excerpt of the STM32 CMSIS header file definitions for the CRC_CR

register file from Listing 2.4 [modm17].

1 // Write CRC -16-CCITT polynomial into CRC_POL

2 CRC ->POL = 0x1021;

3

4 // Read CRC_CR and reset POLYSIZE

5 uint8_t control = CRC ->CR & ~CRC_CR_POLYSIZE;

6 // Set POLYSIZE , RESET and write CRC_CR back

7 CRC ->CR = control | CRC_CR_POLYSIZE_0 | CRC_CR_RESET;

8

9 // Write 4 bytes of data into CRC_IDR

10 CRC ->IDR = 12;

11 CRC ->IDR = 34;

12 CRC ->IDR = 56;

13 CRC ->IDR = 78;

14

15 // Read the computed CRC -16-CCITT from CRC_DR

16 uint16_t crc = CRC ->DR;

Listing 2.6 This C code uses the STM32 CMSIS header files to reimplement the code from
Listing 2.3 in a more readable and portable fashion [modm17].

2.3. Hardware-dependent Software 19

Figure 2.12 The STM32CubeMX graphical pinout configurator showing the alternate pin
functions for pin PB13 on the STM32F303CC microcontroller as documented in the first table
row from Figure 2.4. Note that pin PD8 is missing on the LQFP48 package as expected
[stm08].

1 <Pin Name="PB13" Position="26" Type="I/O">

2 <Signal Name="ADC3_IN5"/>

3 <Signal Name="COMP5_INP"/>

4 <Signal Name="I2S2_CK"/>

5 <Signal Name="OPAMP3_VINP"/>

6 <Signal Name="OPAMP3_VINP_SEC"/>

7 <Signal Name="OPAMP4_VINP"/>

8 <Signal Name="OPAMP4_VINP_SEC"/>

9 <Signal Name="SPI2_SCK"/>

10 <Signal Name="TIM1_CH1N"/>

11 <Signal Name="TSC_G6_IO3"/>

12 <Signal Name="USART3_CTS"/>

13 <Signal IOModes="Analog ,EVENTOUT ,EXTI" Name="GPIO"/>

14 </Pin>

Listing 2.7 A simplified except of the STM32CubeMX internal database showing the pin
function of PB13 encoded as a flat list. Compared to the table in Figure 2.4 the distinc-
tion between Alternate functions and Additional functions is removed and the I/O

structure and Notes categories are missing, with a special IOModes encoding added for
additional configurations [stm08].

for their embedded application, the STM32CubeMX configuration tool generates a
full HdS stack in the C programming language [stm08]. While generating a HdS
stack written in C is a pragmatic choice due to its popularity and history as a sys-
tem programming language [EMD09, BBA17], it is also the main limitation of the
STM32CubeMX tool. Therefore, we discuss what motivations exist to move beyond
C for embedded software in the next section.

20 2. Background

2.3.4 New Programming Languages

So far, we only discussed implementations of HdS in the C programming language.
However, open-source GCC- or LLVM-based toolchains also support a number of
newer compiled languages such as C++ and Rust, while optimized runtimes exist for
interpreted languages such as Python and Go. These languages bring new program-
ming paradigms and features to resource-limited embedded systems that are simply
not supported by C, especially compile-time code execution and extending the type
system.

An example of utilizing new language features is the real-time for the masses (RTFM)
kernel [EHA+13], which uses the nested vector interrupt controller (NVIC) hardware
to run real-time tasks with a stack resource policy on ARM Cortex-M [LFL+16].
The original implementation was targeted at C and required running a separate code
generator before compilation [LLL+15]. However, a C++ [cpp17] and a Rust [rust17b]
implementation can implement the kernel functionality natively and thus removes
the need for a code generator.

The use of C++ is particularly interesting for embedded system, since it is backward
compatible with C and the vendor-provided HdS can be reused, which allows for a
more gradual entry into C++ programming where only the parts of the HdS that are
important to the developer can be replaced with a C++ version [Kor18]. Therefore,
even the newest C++20 features, such as native support for light-weight, stackless
coroutines on ARM Cortex-M [BXHP20], can be used in a new project without
breaking existing code. An example of a C++20 HdS stack using this hybrid approach
is the modm embedded library [modm09], which generates a customized stack for
thousands of AVR and Cortex-M devices using the data sources previously discussed
in this chapter.

However, staying backward compatible to C also limits new C++ features, in partic-
ular, the lack of strict resource ownership semantics cannot be retrofitted, resulting
in memory safety issues that have become a key concern for any new C and C++

projects [Wei16]. In light of these shortcomings, a new systems programming lan-
guage was designed: Rust implements a borrow checker to guarantee memory safety
while providing advanced features similar to C++ such as compile-time execution,
type generics, and polymorphism [rust10]. As a result, it is considered a good fit for
use in embedded safety-critical systems such as avionics [PCO19]. An example of a
Rust HdS stack is the Rust-Embedded project [rust17a], which generates language-
bindings for register access via SVD files, since it cannot reuse the CMSIS header
files.

Besides compiled languages, interpreted languages such as Python and JavaScript
require a runtime to execute the source code directly on the device. Beyond that
are virtual machines that only run bytecode like WebAssembly or rBPF and provide
security and isolation mechanisms through the use of a hypervisor [ZB21]. Even
though these approaches require more resources than compiling C, C++, or Rust down
to native machine code, developing a project in these high-level dynamic languages
may be faster and easier. For example, MicroPython [mpy14] has been used to write
CubeSat software [PL17] and internet of things (IoT) applications [GFK+20] in a
memory-safe, easy-to-use, high-level language.

2.4. Knowledge Modeling 21

However, all of these new languages must access the underlying hardware with the
same MMIO register mechanism described in Section 2.3.1. Therefore, they all re-
quire the same information to generate their language bindings and support tooling,
regardless of what level of abstraction and convenience they provide.

2.4 Knowledge Modeling

In the previous sections, we introduced a number of data serialization formats for
describing the hardware of microcontrollers, each with their own schema that is either
explicitly given, e.g. by CMSIS-SVD, or implicitly derived based on the abstract table
model. In contrast, a knowledge graph is a simple data format that does not require
an initial schema [HBC+21]. Knowledge graphs model facts as edge relations between
entities in a shared graph that embeds the domain-specific semantics of these edges
as well [HBC+21]. Knowledge graphs can start out with only a few simple facts that
over time accumulate into a large and rich graph of combined and interlinked facts,
which can be used to deduct new knowledge about the domain [Jah21].

For example, the statement STM32F303CC is available in TQFP48 package de-
scribes a simple fact from the pinout table in Figure 2.4, which we can describe
with the subject-predicate-object (SPO) triple (STM32F303CC, package, TQFP48).
We then add a couple of pin positions, names and signals to end up with the small
knowledge graph shown in Figure 2.13 on the left. We can also describe the MMIO
register map in the same format, for example, starting with the fact STM32F303CC

has peripheral USART or (STM32F303CC, peripheral, USART) and extending it
to include the registers and bits on the right. On this STM32 microcontroller the
transmit (TX) and clear-to-send (CTS) signals need to be enabled explicitly since
the universal synchronous/asynchronous receiver/transmitter (USART) peripheral
can be used without both when just receiving data without flow control. We can
then evolve these separate graphs into a larger one, by linking the pin signals to
their corresponding enable bit in the peripheral driver.

We can query this information with the graph pattern PB13
signal−−−→ CTS

enable−−−→ ?Bit
bit←− ?Register

register←−−−− ?Peripheral to identify the enable bit unambiguously with
the tuple (CTSE, CR1, USART) and then feed this into a code generator to create a
HAL signal connect and disconnect function demonstrated in Listing 2.8.

Significantly more complex queries are possible, especially if we define the semantics
of the relations and entities in more detail [HBC+21]. For example, to provide a

schema for consistency verification, we define that a pin must have an incoming
pin−→

relation from a position entity, otherwise the knowledge graph semantics are invalid.

We can provide rules for relations too, for example,
enable−−−→ implies that the bit it

points to must be set in the register to enable the entity it points from. We can also

describe that the opposite action of enabling the bit equals the
disable−−−−→ relation, even

though it is not present in the data graph, which allows us to query the bit we need
to clear on signal disconnection as well.

22 2. Background

STM32F303CC

LQFP100 LQFP48 USART

55 52 26 CR3 CR1

PD8 PB13 CTSE TE

TX CTS

package package peripheral

position position register

pin pin pin bit bit

signal signal

enable
enable

Figure 2.13 A simplified knowledge graph describing pin positions in their packages and signals
connected to the USART peripheral with its control registers with the Transmit Enable (TE)
and CTS Enable (CTSE) bits.

1 void connectSignal(Pin p, Signal s) {

2 // Connect the pin to the signal

3 setAlternateFunction(p, s);

4 // Enable the signal if necessary

5 if (p == Pin::PB13) {

6 if (s == Signal ::CTS) USART ->CR1 |= USART_CR1_CTSE;

7 if (s == Signal ::TX) USART ->CR3 |= USART_CR3_TE;

8 }

9 }

10 void disconnectSignal(Pin p, Signal s) {

11 // Disconnect the pin to the signal

12 resetAlternateFunction(p);

13 // Disable the signal if necessary

14 if (p == Pin::PB13) {

15 if (s == Signal ::CTS) USART ->CR1 &= ~USART_CR1_CTSE;

16 if (s == Signal ::TX) USART ->CR3 &= ~USART_CR3_TE;

17 }

18 }

Listing 2.8 Implementations for (dis-)connecting signals to pins with the data derived from
the knowledge graph in Figure 2.13

2.4. Knowledge Modeling 23

The rule set and data graph together constitute a formal representation of domain-
specific knowledge which is called an ontology [HBC+21]. With an appropriate
query solver we can now semantically reason over this domain [Jah21]. This meta-
knowledge can also be used to align the implicit schema given by the abstract table
model via its labeled domain (cf. Section 2.2) with the knowledge graph and then
merge the data into it [TELN03]. With a sufficiently large schema and rule set we
can validate the consistency of the knowledge graph and deduct new information
that can be reintegrated into the graph again [HBC+21].

We can freely define the scope and detail of this ontology depending on the extent and
quality of the input data and how much additional information we want to query out
of it. Therefore, a knowledge graph is easy to scale as required while still using the
same query language and graph algorithms [HBC+21]. There already exist various
other knowledge graphs for broad knowledge that show these properties in practice,
such as DBpedia [LIJ+15] extracted from Wikipedia and the Google Knowledge
Graph [Sin12] used to improve search results.

While the knowledge graph is an abstract concept, the semantic web software stack
provides a concrete implementation via several standardized technologies. The core
idea of the semantic web is to annotate web resources with semantic information,
therefore the syntax is based on XML, so that it can be transparently integrated
into hypertext markup language (HTML) content and accessed by search engines in
a structured way [HBC+21].

Querying:
SPARQL

Ontologies: OWL Rules: SWRL

Taxonomies: RDFS

Data Interchange: RDF

Syntax: XML

Figure 2.14 The semantic web stack showing its standardized layers.

The layers of the semantic web stack are shown in Figure 2.14. The data model
for edge-labelled knowledge graphs based on SPO triples is the resource description
framework (RDF), which can be extended with descriptions of semantic rules of in-
creasing computational complexity relative to the reasoning capabilities of a solver
[HBC+21]. The simplest is the RDF schema (RDFS), which provides basic vocabu-
lary like a datatype hierarchy and pre-defined properties [HBC+21]. However, RDFS
is almost entirely subsumed by the web ontology language (OWL), which generalizes
such rule definitions using a description logic with well understood computational
properties that allow reasoning solvers to terminate on all queries [HBC+21]. Beyond
that exists the semantic web rule language (SWRL) that relaxes rule definitions at
the cost of decidability and runtime complexity, therefore, solvers usually only allow
a subset of this language [Jah21].

24 2. Background

In this chapter, we gave an overview over the diverse set of topics this thesis touches
on. We introduced and gave examples from the STMicro technical documentation
and discussed the limitations of the PDF format that make accessing its text, figures
and tables difficult. Since we are interested in extracting structured information from
the documentation, we introduced the concept of table processing, which provides
ways to work with tabular data in a format agnostic way. To be able to understand
what structured information we need, we discussed hardware-dependent software,
MMIO register functionality, hardware configuration tools, programming languages
beyond C and what data requirements each topic has. Finally, to manage all of these
diverse data sources and formats, we gave an overview of how knowledge modeling
provides a way to store, modify, and reason over a shared representation of facts and
relations. While the goal of this thesis is the combination of all these topics for the
purpose of generating embedded software, they are also their own areas of research
with a lot of in-depth work that we present in the next section.

3
Related Work

After introducing the background for understanding the remainder of this thesis, we
now discuss the related work in the two large areas of information extraction and
embedded software. First, in Section 3.1, we review the related work of data extrac-
tion, table processing, and knowledge modelling, since there is significant overlap
in their problem solving approaches and limitations. Afterward, in Section 3.2, we
introduce data pipeline projects that collect data from various sources for generat-
ing HdS. We conclude this chapter in Section 3.3 with an overview of previous work
on the topics of embedded software and code generators and present the relevant
software libraries in these areas.

3.1 Document Information Extraction

Extracting structured information from non- or semi-structured inputs is a wide area
of research [EHLN06], however, in this section, we only focus on topics related to
table processing, knowledge modeling, and, to a lesser extend, also text mining and
web scraping. While these topics often overlap significantly, we group this section
roughly into three parts: (i) an overview of different table processing paradigms,
(ii) detecting and understanding tables in PDF and HTML, and (iii) converting the
data into knowledge graphs.

The foundation of table processing is the abstract table model (cf. Section 2.2)
[Wan96], used to decompose a table into its logical structural design, tabular ar-
rangement, and presentation style. In this abstract state, table content can be
edited with generic mathematical operations and its presentation can be changed by
applying style rules [Wan96]. The modified abstraction can then be formatted back
into a new table using an efficient algorithm [Wan96].

Hurst [Hur00] then applies this abstract model to tables in documents, for the pur-
pose of extracting their information into a semantic model. Even though the abstract
model already provides an implicit content hierarchy through its labeled domains,

26 3. Related Work

there are many different ways to display data from the same model in a table, which
makes table understanding difficult [Hur00]. Hurst first catalogs all these different
table formats and then provides the simple table relation as a more generic and sim-
pler alternative to the Wang’s labeled domains, which is used to derive a semantic
model of the table content [Hur00].

Summarizing these foundational texts and more related work, Embley et al. [EHLN06]
gives an even more thorough enumeration of table input formats, presentation styles
and table processing paradigms. The survey classifies tables into four categories:

Plain text tables are encoded using only characters in a monospace font, using ASCII
or Unicode symbols to create spacing, newlines and display horizontal and vertical
rules. These tables are therefore limited to simple geometric layouts and plain text
cell content, however, may not always have a clearly defined layout, especially when
not all cell borders are explicitly included to reduce rendering verbosity [EHLN06].

Symbolic tables are unambiguously encoded using markup languages such as HTML
or XML that separate table layout from cell content. Their visualization is per-
formed as a separate step, which allows rendering the same table in different styles
[EHLN06].

Vector tables are found in PDFs (cf. Section 2.1) and scalable vector graphics (SVG)
and encode the table layout and cell content separately using different representa-
tions: text instructions for rendering glyphs and graphics instructions rendering line
art [EHLN06].

Rasterized tables are encoded as a bitmap, typically from a scanned source or
camera image, and contain no layout or content annotations at all. Unfavorable
lighting conditions, low image resolution, and geometric skew make reliable table
recognition and extraction a difficult problem [EHLN06].

For all categories the processing requires first detecting and locating the table and
then understanding the tables structure and content [EHLN06, KLU15]. In this
thesis, we only interact with vector tables in PDFs and symbolic tables in HTML,
therefore we will summarize the related work for detecting and understanding tables
for these two formats next.

3.1.1 Table Detection

For plain text and symbolic tables, detecting a table can be as simple as matching
on special strings in the content stream [CTT00]. However, for vector tables, two
or more content streams need to be evaluated to accurately identify a table location
[EHLN06] and is, in general, not a solved problem for all inputs [KLU15]. Reliably
detecting rasterized tables requires the use of optical character recognition (OCR)
and machine learning [ZSJY20, LWX+21].

A common input source of symbolic tables are websites, which use the HTML tags
<table>, <tr> (row), <th> (header cell), and <td> (data cell) to encode the ta-
ble layout [CTT00]. However, table detection in HTML is complicated when the
<table> tag is used for website structure layout, where a table cell can represent a
menu, form, or contain nested tables [CTT00]. Additionally, the entire table may be

3.1. Document Information Extraction 27

AGRICULTURE, FORESTRY, AND FISHERIES

61

Domestic roundwood production totaled 16.6 million cubic meters in 2004,

which is equivalent to only 30 percent of the peak in 1967 (52.7 million

cubic meters). In 2004, Japan's self-sufficiency rate for lumber was 18.4

percent. Currently, Japan depends mostly on imported lumber for pulp,

woodchip and plywood material.

The slowdown in domestic lumber production has resulted in a decline in

the number of workers engaged in forestry. In 2000, there were 67,000

workers engaged in forestry, a level which represented only 60 percent of

the number recorded ten years before. Also, one out of four workers was

aged 65 and over, highlighting the aging of the labor force.

Table 5.3

Forest Land Area and Forest Resources (2002)

Item Total National Municipal Private

Forest land area (1,000 ha) 25,121 7,838 2,796 14,487

Forest growing stock (1 mil. m
3
) 4,040 1,011 433 2,596

 Planted forests

 Land area (1,000 ha) 10,361 2,411 1,232 6,717

 Growing stock (1 mil. m
3
) 2,338 368 255 1,715

 Natural forests

 Land area (1,000 ha) 13,349 4,770 1,426 7,153

 Growing stock (1 mil. m
3
) 1,701 642 178 881

Source: Ministry of Agriculture, Forestry and Fisheries.

Table 5.4

Supply of Industrial Roundwood
(Thousand cubic meters)

Domestic logs

By use

Total Saw-logs Plywood
Pulp and

Chips
Others

2000 99,263 18,022 12,798 138 4,749 337 81,241

2001 91,247 16,759 11,766 182 4,509 302 74,488

2002 88,127 16,077 11,142 279 4,370 286 72,050

2003 87,191 16,155 11,214 360 4,293 288 71,036

2004 89,799 16,555 11,469 546 4,249 291 73,245

1) Including wood products converted into log equivalence.

Source: Ministry of Agriculture, Forestry and Fisheries.

Year Total
Imported

logs
1)

a

d

b

e

c

f

Figure 3.1 TabbyPDF [SAM+18] detects tables by the regularity of the whitespace surrounding
clusters of text: (a) input page, (b) individual text characters coalesced into words, (c) text
words coalesced into lines, (d) text lines coalesced into paragraphs, (e) table search areas
detected between table breaks in gray, and (f) tables with columns detected.

split up into multiple <table> tags for the purpose of pagination or styling [ETL05].
Therefore, when scraping complex websites for tabular data, the use of heuristics
is still required to locate a symbolic table [CTT00, LKM01, LPL04, ETL05], thus
reducing the advantage of the unambiguous table layout encoding.

For vector tables in PDFs to be detected, the whole input needs to be segregated into
areas of text, figures, and tables. A common approach is coalescing the bounding
boxes of text and graphics into larger clusters [RCVF03, CF04, SAM+18] and then
deciding what type these clusters are. Figure 3.1 visualizes a heuristic algorithm
using only the whitespace between clusters of text to detect tables with, without,
or only with partial borders [SAM+18]. While this approach is more generic, the
accuracy can suffer when tables with borders do not provide whitespace padding be-
tween the cell content and its borders [RCVF03, CF04, RPS16, SAM+18, RPS+18].
A more accurate, but less generic approach uses the properties of the graphic clusters
to decide between a table and a figure, as exemplified in Figure 3.2 [RCVF03].

In practice, figures and tables are often composed of a mix of text with implicit
whitespace borders and different font properties, alignment and and graphics with

28 3. Related Work

Figure 3.2 Differences in graphic line composition makes distinguishing between tables (left)
and figures (right) easier, since the table graphics overlap each other in regular patterns,
whereas the figure graphics are irregular [RCVF03].

various line types and widths, and therefore a combination of both approaches must
be used to reliably categorize the input [RCVF03, CF04, CD16]. A particularly
robust method is to first locate the table and figure captions, usually starting with
“Table” or “Figure”, via text search and then use specialized algorithms to find the
corresponding graphics and text cluster in the immediate neighborhood [CD16].
Extending this idea to all text areas allows for detecting bullet point or numbered
lists as one dimensional tables [LKM01, RPS16, CHCG15]. A completely different
approach is to render the PDF input to images and then use machine learning to
classify the areas visually, although, limited to inputs sufficiently similar to the
training set [RMB+21].

Once a table has been detected and located, some methods choose to convert its con-
tents directly into attribute-value pairs, with the indexing based on labeled domains
[Wan96], simple table relation [Hur00], or customized relations [CTT00, LKM01,
LPL04]. However, most approaches output a more detailed format, such as a subset
of HTML that uses <table> only for tables and not for layout [SAM+18], or var-
ious specialized formats of XML or comma-separated values (CSVs) that preserve
cell formatting information [LPL04, RCVF03, CF04, RPS16, SAM+18, RPS+18].
Figures are either ignored or converted into SVGs [CF04]. These intermediate rep-
resentations are then passed to a separate step that interprets the table content.

3.1.2 Table Understanding

Extracting information from tables involves aligning the table structure and content
with a schema that fits into a larger ontology, which describes the semantics of the
data (cf. Section 2.4) [EHLN06, Ras17]. For generic input, the table structure is
usually not known in advance, thus the schema needs to be derived either from the
table itself, informed by an external ontology, or manually defined [EHLN06].

To derive a schema from the table itself, its structure together with styling, position,
graphics, and font information is used to separate the header cells from the data
cells to generate an indexing relation that fits into the ontology [Ras17, AS13].
However, deriving the schema only works well with tables that are relational in
nature, especially if they contain header cells that already have a strong connection
with the destination ontology [AS13].

A more robust, but complex technique uses an externally provided ontology to guide
the understanding process. This method involves matching a set of user-defined
[EAS13] or heuristically obtained [ETL05] mini-ontologies onto the table structure

3.2. Hardware Description Data Pipelines 29

and then incrementally merging them into a larger ontology [TELN03, EAS13]. Al-
ternatively, an already existing, external ontology [CHCG15] or one text-mined from
the surrounding text [PA18, ZMH+21] can generate a feasible table schema mapping.
Given good training data, machine learning can recognize tables with similar schemas
but different formatting with 80–85% accuracy [PLW19]. The resulting ontologies
and data can be modeled using knowledge graphs, which can then be further evolved
to improve accuracy using various internal reasoning methods in combination with
additional external data sources [Jah21, HBC+21].

To get a better understanding of how the research presented in this section is applied
in practice, we introduce existing information extraction pipelines in the area of
embedded software in the next section.

3.2 Hardware Description Data Pipelines

Extracting information from generic documents is a widespread use case for commer-
cial and open-source tools, typically by applying OCR to scanned or photographed
documents and heuristic algorithms on the obtained text [KLU15]. However, due to
the format ambiguities inherent in generic documents, user input is usually required
to help guide table detection and understanding [KLU15]. For example, Tabula
[pdf12] is a popular, open-source Java application that can extract tables into Excel
format with a GUI to solicit human user input. Khurso et al. [KLU15] compiled a
number of methods and tools for table extraction in their survey. However, in this
section, we are interested in tools that specifically extract information from technical
documents related to embedded software and hardware.

Instabuild [pdf13a] is a commercial tool using OCR to extract a device pinout de-
scription from a screenshot of a datasheet and then convert it into a symbol and
footprint for electronic design automation (EDA) tools, but requiring human super-
vision similar to Tabula. In contrast, uConfig [pdf17] extracts such device pinouts
automatically using a carefully crafted parser that interprets the text bounding
boxes inside the relevant figures. However, uConfig relies on hardcoded heuristics
for pinout figure detection and understanding and thus only succeeds for PDF tech-
nical documentation from vendors with sufficiently similar pinout layouts. Finally,
Datasheet2SVD [pdf20] uses Tabula to extract the memory map from reference
manuals, for which the vendor did not publish a CMSIS-SVD file (cf. Section 2.3.2).
However, Datasheet2SVD is limited to work for only two Renesas PDFs documents.
None of these projects give any kind of evaluation metric for their accuracy or de-
vice coverage, and most have had little to no development activity in recent years
[pdf17, pdf20].

There also exist projects that extract information from machine readable source
such as CMSIS-SVD, CMSIS-Header, and the STM32CubeMX database [stm08]
(cf. Section 2.3.3). modm-devices [modm16] is a Python pipeline that accumulates
data on device pinouts, general purpose input/output (GPIO) signal connections,
peripheral type and counts, and memory sizes for STM32, SAM, NRF, and AVR
microcontrollers. This data is then used to inform the C++ HAL and toolchain
generation in the modm project [modm09]. The embassy-rs data pipeline [stm21]

30 3. Related Work

does almost the same for generating the embassy-rs Rust HAL [rust20], but is limited
to STM32 only.

Tool or Project Data Source Output Data Scope Interaction

Tabula Any PDF Excel, CSV Any table Supervised

Instabuild
Screenshot of

datasheet PDF
EDA symbol Pinout tables Supervised

uConfig Datasheet PDF EDA symbol Pinout figures Scripted

Datasheet2SVD Datasheet PDF CMSIS-SVD Register map Scripted

modm-devices
CMSIS-Header,
STM32CubeMX

Custom XML
with Python

API

Peripherals,
pinouts and

pin functions,
memories

Scripted
with

manual
patches

embassy-rs
CMSIS-SVD,

STM32CubeMX
Custom JSON

Peripherals,
pinouts and

pin functions,
register map

Scripted
with

manual
patches

Table 3.1 Comparison of tools and projects that extract hardware description data from PDF
and machine-readable sources.

In summary, PDF-based tools are limited to extracting very specific data for a
limited number of devices, while the most extensive datasets are only generated
from the machine-readable sources STM32CubeMX, CMSIS-Header and CMSIS-
SVD. A comparison summary of all these tools and projects is given in Table 3.1.
To get an overview of the use cases that can consume the hardware description data
generated by the pipelines, we present related work in the area of embedded software
in the next section.

3.3 Generating Hardware-dependent Software

We introduced the layered stack of hardware-dependent software (HdS) based on
the work by Ecker et al. [EMD09] in Section 2.3. While their work extends beyond
the scope of this thesis by also covering toolchain setups and verification concepts, it
is kept abstract without resulting in a working HAL [EMD09]. In contrast, Beningo
[BBA17] applies all the principles of HdS design described by Ecker et al. in a very
practical guide by developing concrete HAL APIs in C for several peripherals with
documentation and testing. Kormanyos [Kor18] provides a similar practical guide,
however, with an additional emphasis on using the object-oriented and template C++

language features.

An example of a HAL project written in C is the Linux Zephyr RTOS [lin14], which
supports a large number of platforms and specific devices and can supports cus-
tomization via the KConfig and Linux DeviceTree [lin16] interface, which are also
used by the Linux Kernel. The configuration and hardware description data is for-
matted as C pre-processor (CPP) definitions and is used by Zephyr as an implicit

3.3. Generating Hardware-dependent Software 31

code generator that is built into the C/C++ toolchain and runs during compilation.
A different approach is taken by the STM32CubeMX configuration tool, which in-
stead generates its C HAL in a separate step before compilation. modm [modm09]
is a C++20 library that also explicitly generates a HAL and hardware-dependent unit
tests for many AVR, STM32, and SAM devices based on data from modm-devices
and customization options. The Embedded Rust project [rust17a] generates parts
of their HAL in the Rust language with a similar feature set and device coverage.

As mentioned in Section 2.3.4, languages other than C must provide their own
bindings for the register map. For this purpose, a number of specialized code gen-
erators exist to convert CMSIS-SVD files [svd15b] into a specific representation (cf.
Section 2.3.2). The unmodified SVD files of most vendors can be found on GitHub
[svd15a] and, for STMicro only, in a special repository with manually written patches
[stm17b] to improve their accuracy. These files are the input for these language-
specific code generators: SVDConv [svd15d] for generic C, SVD2Rust [rust16] for
Embedded Rust, SVD2Ada [ada15] for Embedded Ada, and SrcGen [svd15c] for
generic Assembly, C or Clojure definitions.

Code generation is an essential tool for writing and maintaining embedded software,
since the limited code space on most devices makes a runtime selection of HAL
drivers and configuration options infeasible [EMD09] and instead moves these spe-
cializations into the toolchain or customized tools. Since we only discussed practical
projects so far, we will now present related work in the area of model-driven soft-
ware engineering (MDSE), starting with generating only specific parts of HdS before
broadening the scope.

Holman et al. [HS15] generates a HAL out of manually written code templates as
an open replacement for the STM32CubeMX tool, while Huning et al. [HOSP21]
extends this idea by integrating the process into a vendor-independent MDSE GUI
tool. The data for both approaches is manually provided using XML. Weiss et al.
[WRSW21] source data describing the memory map to automate hardware in the
loop (HiL) testing by forwarding peripheral access to a real device to validate hard-
ware behavior directly rather than relying on mockups. However, most of this MDSE
work is similar to and at least partially implemented by the practical code generation
projects described earlier.

Looking beyond microcontrollers, I2CDevLib [i2c11] accumulates manually defined
register maps for external devices such as sensors connected over inter-integrated
circuit (I2C) and serial peripheral interface (SPI), and provides basic C drivers for
them. Cyanobyte [Fel20] continues this concept by generating device drivers against
a number of HAL APIs from an abstract dataset. The main advantage of such a
design is that projects with a custom HAL only need to provide a code template
to gain access to all drivers [Fel20]. Yin et al. [YHZ+11] builds on this concept by
describing the algorithms required for the readout and conversion of sensor values
as state machines to generate code from.

Expanding the scope again, Schirner et al. [SGD08] generate an entire HdS stack
including tasks for a specific application by transforming a user-derived abstract sys-
tem model using an architecture mapping that describes the hardware functionality
in great detail. Acquaviva et al. [ABFV13] take an even more radical approach by
using the electrical hardware representation, called register-transfer level (RTL), to

32 3. Related Work

extract state-machines and register maps that are transformed into C drivers. While
both generators create highly functional HdS, they also require detailed inputs that
significantly exceeds what is available from the technical documentation or any other
publicly available source and is therefore not applicable for us.

In conclusion, we discussed related work in information extraction from PDF and
HTML, especially table detection and understanding, and gave examples of existing
such data pipelines in the area of embedded software, before finally describing code
generation use cases that consume such data.

We note that even though data extraction from tables is a hard, but well understood
problem, data pipelines in the embedded software space do not apply these lessons at
scale and instead either focus only on extracting only specific data like pinout detec-
tion from documents (Instabuild, uConfig) or only extract data for specific devices
(Datasheet2SVD). The most extensive pipeline projects (modm-devices, embassy-
rs) eschew documents altogether and only use already machine-readable data (SVD,
CMSIS Headers, STM32CubeMX database).

Projects using code generators are therefore limited to the scope of the easily ac-
cessible data, with a current focus on SVD files, or they are forced to manually
build databases to enable their use case (I2CDevLib, Cyanobyte). However, several
research ideas [SGD08, ABFV13, YHZ+11, WRSW21] use very extensive datasets
for which a pipeline is missing as of now and therefore must derived the required
data heuristically or via user input.

In the next chapter, we investigate how the lack of detailed data sources limits the
process of porting and maintaining HdS and tooling, which we describe as a scenario
as part of our problem statement.

4
Problem Statement

In the previous chapters, we provided an overview over how HdS interacts with the
underlying hardware and gave examples of existing libraries that implement and ab-
stract these mechanisms in several languages. However, the vast variety of different
microcontroller hardware from many different vendors make the porting process of
these libraries to new hardware a significant challenge due to the variety in function-
ality [EMD09, Kor18, BBA17]. For example, STMicro alone designed almost 3000
STM32 microcontrollers, each with different microprocessors, peripherals, memory
sizes, and packages [modm16, modm09], requiring the use of GUI tools such as
STM32CubeMX [stm08] to provide an overview of the configuration options of the
HdS stack.

In this chapter, we describe the typical process of porting HdS to a new development
board, containing a microcontroller and several external devices in Section 4.1 to
understand how much effort the port requires and what kind of data we need to
access in the technical documentation. From this description, we derived a set of
challenges in Section 4.2. Then, in Section 4.3, we discuss how well the related work
described in Chapter 3 meets these challenges, before stating a concise problem
statement of the parts missing in the related work in Section 4.4. By tackling
the problem statement, we achieve several individual contributions that we list in
Section 4.5.

4.1 Porting Hardware-dependent Software

Our scenario focuses on porting a HdS stack to a new microcontroller connected
to several external devices on the same development board. This process involves
reading the technical documentation of the involved hardware and converting this
information into code and configurations. In Figure 4.1, we listed the the individual
steps involved in porting a HdS stack. We start our scenario at the lowest HdS
layer and work upwards (cf. Figure 2.7), describing the data required for porting the

34 4. Problem Statement

1 boot firmware, 2 HAL, and 3 device drivers for a 4 development board. We
illustrate this porting process with a STM32 microcontroller, however, the steps are
similar for most embedded devices. We conclude this section with a discussion of
other data uses such as 5 configuration tools, build systems, 6 testing, and part
evaluation.

Boot
Firmware

1

CPU/FPU
Memories

Vector Table
Clock/Power

Hardware
Abstraction

2

Package Pinout
Pin Functions
Register Map
Interconnects

Device
Drivers

3

Package Pinout
Pin Functions
Register Map
Capabilities

Board
Support

4

Board Pinout
Microcontroller

External Devices
Power/Clock

Tooling5 Testing 6

Figure 4.1 Porting process overview. Steps 1 through 4 implement HdS stack layers and
therefore depend on each other, while 5 tooling and 6 testing software is required at any
point of the process. The individual steps depend on data that is manually transcribed from
the technical documentation as part of the development effort.

4.1.1 Boot Firmware

The STM32 microcontroller series uses the ARM Cortex-M microprocessor, which
boots on reset by jumping to the Reset function pointer located at the hardcoded
address 0x0000 0004 and executing the instructions there [PM0253]. This address
is part of the interrupt vector table defined in the reference manual as shown in
Figure 4.2 and is unique for each device [RM0432]. A linkerscript tells the linker how
to place the compiler-emitted instruction and data sections (including the interrupt
vector table) into the correct hardware memories as defined in the reference manual
[RM0432, PM0253].

Once the hardware jumps to the Reset handler, the boot process continues only
in software, which configures the hardware further depending on the needs of the
application [PM0253]. Typically the reset handler enables and configures the floating
point unit (FPU), internal caches, bus peripherals to external memories, and copying
data sections from read-only memory (ROM) to random-access memory (RAM).
An optional second boot phase initializes the language runtime environment by
setting up the heap, configuring exception handling, and calling static constructors
[BBA17, EMD09, Kor18].

At this point, the device is ready to execute software, but only in the boot configura-
tion, running at a low clock frequency and with no peripherals initialized [RM0432].
To achieve a high clock frequency, we have to configure the phase-locked loop (PLL)
to multiply the input clock source, and then set up the clock and power graph to

4.1. Porting Hardware-dependent Software 35

P
o

s
it

io
n

P
ri

o
ri

ty

Type of

priority
Acronym Description Address

- - - - Reserved 0x0000 0000

- -3 Fixed Reset Reset 0x0000 0004

- -2 Fixed NMI

Non maskable interrupt. The RCC clock security

system (CSS) and the RAM parity check are linked to

the NMI vector.

0x0000 0008

- -1 Fixed HardFault All classes of fault 0x0000 000C

- 3 Settable SVCall System service call via SWI instruction 0x0000 002C

- 5 Settable PendSV Pendable request for system service 0x0000 0038

- 6 Settable SysTick System tick timer 0x0000 003C

0 7 Settable WWDG Window watchdog interrupt 0x0000 0040

1 8 Settable PVD_VDDIO2
PVD and VDDIO2 supply comparator interrupt

(combined EXTI lines 16 and 31)
0x0000 0044

2 9 Settable RTC RTC interrupts (combined EXTI lines 17, 19 and 20) 0x0000 0048

Figure 4.2 The first 16 entries in gray of this interrupt vector table excerpt are reserved
for signal handlers of the ARM Cortex-M0 microprocessor [PM0253], while the remainder is
defined by the vendor and usually varies greatly between devices [RM0091].

distribute the clock to all required peripherals [RM0390]. Understanding where a
peripheral is clocked from requires combining the overview renders in Figure 4.3 with
the boundary address tables discussed in Section 2.3.1 [RM0390]. Once the device
is configured, the boot process jumps to the main function to delegate control to the
application. Table 4.2 summarizes the data we need to extract from the documen-
tation for this step and the estimated effort to do so. However, in the next section,
we will see that the porting of the HAL is already more complicated and requires
much more data than this step.

Functionality Data Description Extraction Effort

CPU/FPU Type, features, precision, and extensions Low
ROM/RAM/caches Type, locations, sizes, and power requirements Medium
Interrupt vectors Position and name of interrupt vectors Medium
Power management Supply type, power states, and clock gates Medium
Clock graph Clock distribution connections High

Table 4.1 Summary of the data needed to port the boot firmware to a new STM32 device
and the estimated effort required to extract it from the technical documentation.

4.1.2 Hardware Abstraction

Once we have configured the clock system, we write a GPIO driver that allows us to
connect the microcontroller to external signals via its pin alternate functions. Both
the pinout and the list of alternate functions is unique per device and described
in the datasheet as a long table (cf. Figure 2.4), whose format has already been
discussed in Section 2.2.

36 4. Problem Statement

MCO2
/ 1 → 5

SYSCLK
PLLI2S

/ 2 → 31
MCO1

/ 1 → 5

16 MHz
HSI RC

HSI

PLL

PLLCLK

PLLQ

PLLR

/ M1

/ P

/ Q

/ R

PLLSAI

PLLSAIP

PLLSAIQ

/ M3

/ P

/ Q

/ R

DIV

PLLI2S

PLLI2SP

PLLI2SR

/ M2

/ P

/ Q

/ R

DIV
PLLI2S_SAICLK

PLLR

USB2.0 PHY

24 → 60 MHz

OTG_HS_SCL

I2S2

clocks

I2S_CKIN

I2S1

clocks

AHB

PRESC

/ 1,2,..512

HSI
SYSCLK

PCLK1

Peripheral

clock enable

FMPI2C1

clock

HDMI-CEC

clock

SDIO

clock

Power ctrl

clock

CPU

clock

FCLK Cortex

free-running clock

AHB peripheral

clocks

SysTick

clock

APB1 peripheral

clocks

APB1 timer

clocks

APB2 peripheral

clocks

APB2 timer

clocksif (APB2 presc = 1) x1

else x2

APB2

PRESC

/ 1,2,4,8,16

USBHS

ULPI clock

SPDIFRX-IN

clock
PLLI2SP

PLLI2S_SAICLK
USB 48 MHz

clock

SAI2 clock

SAI1 clock

if (APB1 presc = 1) x1

else x2

APB1

PRESC

/ 1,2,4,8,16

/ 8

not deepsleep

not (sleep or deepsleep)

HSE

HSI

PLLCLK

PLLR

SYSCLK

System

clock

1

LSE

H
S

E
_

R
T

C

LSE

/ 488HSI

LSI RC

32 kHz
LSI

Enable

watchdog IWDGCLK

RTC / AWU enable

RTC / AWU

clock

PLL48CLK

HSE

LES OSC

32.768 kHz

OSC32_IN

OSC32_OUT

4-25 MHz

HSE OSC

OSC_IN

OSC_OUT

Clock

enable

Peripheral

clock enable

Peripheral

clock enable

Peripheral

clock enable

Peripheral

clock enable

Peripheral

clock enable

clock enable

Clock

enable

I2S_CKIN

Clock enable

Clock enable

Clock

enable

Clock

enable

Clock

enable

Clock

enable

Clock

enable

Figure 4.3 In this clock graph, the external clock signals enter on the device from the left and
feed into multiple phase-locked loops (PLLs) that generate different frequencies. An internal
network then distributed the clock to the peripherals on the right [RM0390]. The complexity
of this figure and its contained graph data is much higher than for the interrupt vector table
in Figure 4.2, making it a challenge to convert into code.

Next, we write HAL drivers for common special-purpose peripherals such as univer-
sal asynchronous receiver/transmitter (UART), SPI, I2C, analog-to-digital converter
(ADC), and digital-to-analog converter (DAC). For each peripheral, we consult the
reference manual for the description of its functionality and register map as discussed
in Section 2.3.1. If our HAL already has drivers for these peripheral types, we can
check if they are compatible with our device’s register map, preventing us from writ-
ing duplicate drivers [BBA17, Kor18]. For example, a simpler version of the CRC
peripheral we discussed in length in Section 2.3.1 exists with a fixed polynomial

4.1. Porting Hardware-dependent Software 37

and no data reversal options. This simpler CRC register maps subset is missing the
POL, POLYSIZE, REV_OUT, and REV_IN bits in the register map from Figure 2.10, but
functions identically otherwise [RM0432]. We can therefore determine peripheral
compatibility by opening the reference manuals of every device our HAL already
supports and manually comparing their CRC register maps.

More complicated drivers abstract the combination of several peripheral functions
into a cohesive API [EMD09]. For example, instead of polling for new data, the
UART driver configures a hardware interrupt to be triggered on data reception,
which requires knowing which vector table position to insert the interrupt handler
[BBA17, Kor18]. A common further driver improvement is to configure the DMA
peripheral to transfer the received UART data to a memory buffer without any
central processing unit (CPU) intervention at all [BBA17, Kor18]. For STMicro, we
need to find the correct stream/channel combination for the peripheral event in the
DMA trigger table from Figure 2.5, where the UARTx_RX events are all located in
channel 4.

Table 4.2 provides an overview of the data required to port a HAL to a new device
to show how much of the work is spent on finding, copying, and formatting data
into code. More complex peripherals require accessing even more documentation
for proper configuration. However, these peripherals often implement an external
communication standard, such as CAN, Ethernet or universal serial bus (USB),
whose entire descriptions are usually only referenced, but not reproduced in the
documentation [BBA17, EMD09, Kor18]. Additionally, peripherals are usually not
accessed on their own, but wrapped in a device driver, whose porting process we
describe next.

Functionality Data Description Extraction Effort

Package pinout Position and name of package pins Medium
Pin functions Index and name of pin functions High
Peripherals Name, type, instances, and features Medium
MMIO register map Description of each registers and bit field High
DMA triggers Peripheral events that trigger DMA transfer Medium

Table 4.2 Summary of the data needed to port a HAL to a new STM32 device.

4.1.3 Device Drivers

External devices can range from simple analog temperature sensors connected via the
ADC to complex communication modules connected via high-speed digital interfaces
like UART or SPI, essentially acting similar to a peripheral connected via an external
bus [BBA17]. The data we need to look up in the device datasheet is summarized in
Table 4.3 and is largely comparable to the data required for the HAL. The software
driver builds atop this HAL to abstract the communication and configuration of the
device and represent its hardware features as a software API to the application (cf.
Figure 2.7) [EMD09]. However, some of the device configuration is not determined
by the driver, but by the way the hardware is connected on the development board
and this information needs to be provided externally to the software as we describe
next.

38 4. Problem Statement

Functionality Data Description Extraction Effort

Capabilities Input/output data ranges and features Medium
Power and voltages Electrical operating conditions Low
Package pinout Position and name of pins Medium
Communication Bus protocol and its configuration Medium
MMIO Register map Description of each registers and bit field High

Table 4.3 Summary of the data and effort required for writing a new device driver.

4.1.4 Board Support Package

To assemble a complete hardware product, the microcontroller is connected to active
devices and passive components via a printed circuit board (PCB), which routes the
power and signals between all components [Kul17]. The PCB layout can also directly
influence device configuration in software, for example, setting the I2C address by
pulling several device pins to a high or low voltage level [EMD09]. The hardware
configuration of board components is represented in the HdS stack as the board
support package (BSP) and includes the HAL and all device drivers in a configured
state as specified by the PCB design. Figure 4.4 shows a block diagram of a STMicro
IoT evaluation board chosen for its extensive suite of on-board devices connected to
the internal peripherals. Figure 4.5 renders the pinout of the external connectors that
can be used to integrate the board into a larger embedding system. The hardware
connections and configurations of all components are described in the corresponding
user manuals or datasheets. Table 4.4 lists the data we need to extract from the
technical documentation for writing a new device driver.

Functionality Data Description Extraction Effort

Microcontroller Part number and documentation Low
External devices Part numbers and documentation Medium
Signal connections Bus protocols, peripherals and pins High
Power supply Electrical operating conditions Medium
Hardware configuration Input Sources, Distribution Medium

Table 4.4 Summary of the data required for a board support package.

Above the BSP exist the middleware and application layers of the HdS stack, which
vendors provide separate documentation on. However, the data contained in these
documents is context dependent and must be interpreted by a domain expert for a
specific use case. We therefore describe next how software tooling can benefit from
all the data we presented so far.

4.1.5 Configuration Tools and Build Systems

Tools that visualize the options for configuring the HAL, device drivers, and BSP are
very useful for the discovery and understanding of hardware and software features.
An example of a configuration tool is the STM32CubeMX application [stm08] which
contains a large database of data as we described in Section 2.3.3. The build system

4.1. Porting Hardware-dependent Software 39

6 Hardware layout and configuration

The B-L4S5I-IOT01A Discovery kit for the IoT node is designed around the STM32L4S5VIT6 target
microcontroller in a 100-pin LQFP package. The hardware block diagram (Refer to Figure 2) illustrates the
connection between the STM32 and peripherals: embedded ST-LINK, ARDUINO® Uno V3 shields, Pmod™

connector, Quad-SPI Flash memory, USB OTG connectors, digital microphones, various ST-MEMS sensors,
and the three RF modules (Wi‑Fi®, Bluetooth®, and NFC). Figure 3 and Figure 4 help users to locate these
features on the B-L4S5I-IOT01A Discovery kit for the IoT node. Figure 5 gives the mechanical dimensions of the
B-L4S5I-IOT01A Discovery kit for the IoT node.

Figure 2. Hardware block diagram

STM32L4S5VIT6

(I)MP34DT0x digital microphone

RTC

SWD

3.3 V Power
supply

32 KHz Crystal

ST-LINK /
V2-1

GPIOs and
UART3

DFSDM

ISM43362-M3G-L44
Wi-Fi® module

PmodTM (2A) connector
PmodTM (4A) connector

LEDs,
reset and wake-up

buttons
GPIOs

GPIOs and
SPI2

GPIOs and
UART2

HS PHY and
Micro-AB USB

connector
OTG FS

QSPI64-Mbit Quad-SPI Flash
(MX25R6435F)

VCP UART1

ARDUINO® UNo
Shield connectors

GPIOs,
UART4,

and SPI1

Micro-B
USB

connector

GPIOs and
SPI3

SPBTLE-RF
Bluetooth® module

SPSGRF Sub-GHz
(Spirit) module

Not fitted

ST25DV04K NFC
module

GPIOs and
I2C2

LIS3MDL
3-axis magnetometer

LSM6DSL
3D gyroscope

LPS22HB
digital barometer

HTS221
humidity and temperature

VL53L0X
ToF and gesture

detection

STSAFE-A110
authentication and

security

(I)MP34DT0x digital microphone

UM2708
Hardware layout and configuration

UM2708 - Rev 2 page 7/41

Figure 4.4 This hardware block diagram of a STM32L4 development board shows the on-
board connections of four wireless communication modules, six sensors, two external security
and memory devices, and several extensible wired interfaces [UM2708]. The BSP should provide
an API for the application to configure all these interfaces and devices.

also needs to be configured according to the devices used in the project [EMD09].
In particular, the compiler must be informed of the architecture instruction set and
language options to enable, which can differ depending on the CPU and FPU type,
optional extensions, and layout of the ROM, RAM and caches [EMD09]. The debug-
ger has to be told which debug hardware types and interfaces to enable [EMD09].
In addition, we also need to configure testing and simulation tools to validate the
HdS implementation, which we describe next.

4.1.6 Testing and Simulation

Testing embedded software differs from more traditional software since the embed-
ding system needs to be part of the test, which can make it more challenging to test
the HdS layers independently [BBA17]. Therefore, reducing hardware exposure is
key and can be archived by generating minimal test cases based on the hardware

40 4. Problem Statement

PC0
PC1
PB0
PA4
PA1
PA0
NC
VIN
GND
GND
+5V
+3V3
RESET
IOREF
NC
GND
E5V
PD2
PC11

PC3
PC2
VBAT
PF1
PF0
PC15
PC14
PC13
PB7
GND
PA15
PA14
PA13
NC
NC

BOOT0
VDD
PC12

NUCLEO-F302R8

NC
NC
PC4
AGND
PA5
PA6
PA7
PB1
PB2
GND
PB11
PB12
PA11
PA12
NC
U5V
PC5
PC6
PC8

PA9
PC7
PB6
PB15
PB14
PB13
GND
AVDD
PB9
PB8
PC9

PA3
PA2
PA10
PB3
PB5
PB4
PB10
PA8

D8
D9
D10
D11
D12
D13
GND
AVDD
D14
D15

D0
D1
D2
D3
D4
D5
D6
D7

A5
A4
A3
A2
A1
A0

VIN
GND
GND
+5V
+3V3
RESET
IOREF
NC

PC10
10

9

8

7

6

5

4

3

2

1

8

7

6

5

4

3

2

1

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

1

2

3

4

5

6

1

2

3

4

5

6

7

8

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

32

34

36

38

CN7 CN10CN5

CN9

CN6

CN8

Figure 4.5 The external pinout for the Nucleo-64 development board renders multiple con-
nectors and rows of pin names in an implicit tabular structure over the outline of the PCB
[UM1724]. The embedded system interfaces with the embedding system through these con-
nections [EMD09].

capabilities described in metadata [WRSW21]. However, due to the large amount
of devices and their documentation, assembling this metadata can demand a lot of
manual effort. A more flexible strategy is to simulate the hardware instead, which
can make testing more reliable and reproducible [BBA17]. For example, the Renode
tool simulates both the instruction set as well as a scripted peripheral implementa-
tion based on the MMIO register description [ant17]. However, if a more accurate
peripheral behavior is required, we need to implement it ourselves by again consult-
ing the technical documentation [ant17].

The steps we discussed so far apply only for porting new devices to the same HdS
stack. Depending on the use case however, we may also want to port several HALs
onto the same device for reasons we describe next.

4.1.7 Specialized Hardware Abstraction Layers

Some microcontrollers have such specialized hardware peripherals, which signifi-
cantly impairs abstracting their functionality as an abstract HAL interface [EMD09].
Vendors advertise such peripherals as a unique selling points that help implement
specific use cases, but require a high level of domain expertise to study the docu-
mentation and apply the vendor solution both on the hardware and software side
of the problem [EMD09]. These specializations make it difficult to provide a truly
universal HAL, since embedded hardware is highly fragmented [EMD09] and thus
implementing multiple optimized HALs can be justified for use cases that we briefly
describe next. However, the porting process and data required for each is comparable
to the steps we discussed previously.

A high-performance brushless motor controller calls for time-synchronized analog
readings for current control that are then transformed into specific waveforms via

4.1. Porting Hardware-dependent Software 41

generation capabilities from the timer peripherals [MKM97]. The feature sets of the
timer and analog peripherals can vary greatly between STMicro devices [modm16].

Audio processing on microcontrollers demands strict timing guarantees, which can
be achieved by using DMA to transfer data from an input peripheral to memory,
perform the processing operations using optimized digital signal processing (DSP)
algorithms, before outputting the new audio stream on another peripheral also via
a DMA transfer [MPSD20]. The CPU type and DMA trigger map is specific to the
respective device (cf. Figure 2.5).

Wireless networking requires extensive knowledge of both the protocol and the
hardware implementation, particularly if security and energy-efficiency is required
[AN21, QRAS+18]. Advanced features can realistically only be implemented directly
on top of custom hardware peripherals and are therefore not portable by design
[AN21, QRAS+18].

Low-power embedded applications need to know the static power consumption of
each enabled peripheral as well as the dynamic response of (re-)configuring the sys-
tem at runtime [HBPT15, QRAS+18]. Power-efficient scheduling abstractions need
to work with arbitrary hardware limitations and thus can yield wildly different HAL
and operating system (OS) concepts optimized for different microcontroller archi-
tectures [HBPT15].

Rendering 2D graphics for user interfaces can benefit greatly from hardware accel-
erators, which on microcontrollers are usually DMA-based blitting engines [Bod17].
However, the specific implementation of the accelerator can heavily influence the
feature set of the graphics library [Bod17].

For each of these examples, the effort needed to port the specialized HAL to a new
device increases even though the hardware remains the same across all HALs. In
the worst case, the developers will look up the exact same data from the technical
documentation for each HAL implementation, resulting in a lot of duplicated effort.

The scenario we described in this section shows the many important roles technical
documentation plays in the porting process and beyond. For the purpose of imple-
menting a new HdS stack or porting it over to a new device, developers need to
extract a lot of specialized data from many different documents in multiple formats
and transform it into code, tools, and configuration data. This process is compli-
cated by the wide range of data the documentation provides, which intersects the
expert domains of software and electrical engineering. To qualify this data and ex-
traction effort in more detail, we introduce the challenges our design must address
next.

42 4. Problem Statement

4.2 Challenges

Our design needs to tackle several challenges that we derive from our scenario. Most
challenges are concerned about the accuracy and resolution of the extracted data.

C1: Coverage The technical documentation bundles multiple similar devices into a
single PDF to reduce duplication and provide context-dependent annotations
in the form of table structure and footnotes to describe which data applies to
what device. Our design must be able to understand these annotations and
de-multiplex the contained data into a non-shared representation that covers
each individual device.

C2: Fidelity The data derived from the documentation should contain enough detail
for each hardware feature so that all relevant HdS implementation decisions
can be derived sorely from the dataset and not have to rely on manually added
information or heuristics.

C3: Correctness Our design must not introduce systemic errors during the data
extraction process. Incorrect data needs to be detectable either via internal
consistency checks or by comparison to external data sources.

C4: Clarity The extracted data must be unambiguously encoded so that querying
different parts yields consistent results. If multiple sources with conflicting
data exist, a deterministic strategy must be defined to merge them and produce
a high-quality version.

C5: Maintainability Our design must be implementable with reasonable effort, where
accessing the technical documentation does not require significantly higher cost
compared to machine-readable sources. Wrong information in the documents
that cannot be automatically corrected, needs to be automatically patchable
also with reasonable effort. In particular, user intervention cannot be required
due to the large volume of data.

C6: Extensibility Our design should allow for multiple input sources: technical doc-
umentation, source code, and proprietary databases to produce the most com-
plete dataset possible. While this thesis focuses only on STMicro, our design
should also allow for other vendors.

C7: Discoverability Our design should output the extracted data in a standardized
format that aids with introspection and discovery of its content via third-party
tools.

C8: Accessibility The dataset needs to have a simple API that presents a domain-
specific view of the data on top of the storage format. This API helps embed-
ded software engineers, who are not familiar with data science concepts, access
the data.

In the following, we discuss how well the related work, presented in Chapter 3, can
fulfill these challenges and what their deficiencies are.

4.3. Existing Work 43

4.3 Existing Work

In Chapter 3 we described the related work on the topics of information extraction,
data pipelines, and embedded software. In this section, we assess how well these
approaches address the challenges we formulated in the previous section.

4.3.1 Information Extraction

A recurring theme in the work we presented on information extraction is the focus
on universal inputs, where the specific content domain and the document formatting
and structure is unknown during the detection and extraction phase, therefore, the
majority of the approaches are forced to use general heuristics to guide the pro-
cess [CTT00, LKM01, LPL04, ETL05, RCVF03, CF04, RPS16, SAM+18, RPS+18].
When focusing on the detection of PDF tables, the common solution is to ignore
vector graphics and detect and reconstruct the table structure only from the whites-
pace between the text of the cells [RCVF03, CF04, RPS16, SAM+18, RPS+18]. As
a result, the accuracy of detection and conversion varies wildly per document and
technique, which can make accessing the table content more difficult [RPS+18].

However, the format variation of technical documentation is restricted and its struc-
tural building blocks are much more specific than a generic PDF document. For
example, the datasheets, reference manuals, errata sheets, and user manuals from
STMicro all share the same style of formatting (cf. Section 2.1), so we can make
simplifying assumptions for our conversion process. In particular, the detection of
tables and figures can be guided by their caption as proposed by Clark et al. [CD16]
and the tables cell partitioning can be guided by the vector graphics as implemented
by Ramel et al. [RCVF03]. Similarly, text can be classified into headings, para-
graphs, lines, lists, and sub-/superscripts if we know the font sizes and line spacings
beforehand, rather than relying on heuristics [LKM01, RPS16, CHCG15].

Once the content has been detected, we need to comprehend it. In this regard, most
work focuses on tables since they already contain an implicit structure to analyze.
Extracting the data schema from the tabular structure works well with strongly
relational tables. However, the tables in technical documentation are domain-specific
and often introduce terminology and formatting that is bound to their context.
Consequently, this approach is infeasible in practice. [Ras17, AS13]. Aligning the
table data with an external schema requires an existing ontology [CHCG15], however,
we could not find one for the embedded software domain. Moreover, text mining a
substitute ontology from the document text [PA18, ZMH+21] seems challenging for
such a technical domain and may require significant manual intervention. Since we
do not want to parse all tables in the document, but extract a specific set of data for
a specific purpose, we would instead manually match a mini-ontology onto a table
structure [EAS13] and merge this data into a larger knowledge graph [TELN03,
EAS13].

None of these works have applied table processing to technical documentation specif-
ically, however, a few promising conversion tools exists, most notably the TEXUS
processing pipeline [RPS+18] shown in Figure 4.6. While TEXUS is by far the clos-
est practical solution for table processing technical documentation, it does not make

44 4. Problem Statement

use of captions or vector graphics to detect and understand tables and relies only
on whitespace analysis of text and since it is a generic tool, does not provide an
embedded software ontology either.

Locating Segmenting

Locating

Output

Doc

Model

Functional

Analysis

Segmenting

Output

Structural

Analysis

Functional

Output

Abstract

Table

Document

Converting

Input

PDF

Table Extraction Tasks Table Understanding Tasks{ {} }

Figure 4.6 The end-to-end table processing pipeline from TEXUS [RPS+18].

4.3.2 Data Pipelines

Beyond generic information extraction tools exist several commercial and open-
source projects that specialize in the embedded software domain. Instabuild [pdf13a]
deploys computer vision to extract a pinout table from a datasheet screenshot, but
requires user interaction (EC5: Maintainability). uConfig [pdf17] extracts device
pinouts by matching text positions inside the pinout figure diagram of the PDF di-
rectly without table processing and therefore cannot extract any other data (EC2: Fi-
delity). Datasheet2SVD [pdf20] extracts the memory map from reference manuals
based only on text, however, is limited to only two specific documents (EC1: Cover-
age). No project gives any evaluation metric for their data correctness (EC3: Cor-
rectness) or allows merging multiple sources (EC6: Extensibility).

The two projects modm-devices [modm16] and embassy-rs-data [stm21] both ex-
tract data from already machine-readable datasets, specifically the STM32CubeMX
database [stm08], CMSIS-Headers and CMSIS-SVD. However, these pipelines do
not source PDF technical documents and are therefore limited to the data that
the vendors provide in their tools and whose undocumented format can be reverse-
engineered properly (EC2: Fidelity). Both tools further store their data in custom
formats (EC7: Discoverability) and do not share any manual data fixes (EC5: Main-
tainability). For STMicro in particular, the official CMSIS-SVD files are missing a
lot of register descriptions [stm17a] and a crowd-sourced effort to patch them is not
progressing fast enough [stm17b] (EC3: Correctness).

In summary, the existing data pipelines that source PDF technical documents only
do so for a small subset of the contained data, while pipelines that have high device
coverage and data fidelity rely on vendor-provided machine-readable datasets. Thus,
we identify a research gap in terms of a data pipeline that fulfills our outlined
challenges (cf. Section 4.2).

4.3.3 Embedded Software

Code generators are widely used in academia and practice to convert data into
code. Both the Linux Zephyr RTOS [lin14] and Embedded Rust [rust17a] use the
language pre-processor to configure their HAL during compilation, while the modm
libary [modm09] and the STM32CubeMX tool [stm08] generate their HALs using a

4.3. Existing Work 45

template engine before compilation. All of these projects use their own datasets in
their own format, either manually assembled of unknown quality or extracted via a
data pipeline described previously. This diverse tooling landscape complicates data
exchange, particularly if the templates themselves contain implicit data in the form
of switching logic [HS15, HOSP21]. The exception are language-bindings generators
that source the standardized and widely available CMSIS-SVD files, whose accuracy
and completeness is, however, controlled only by the vendor.

Looking beyond HAL generation, I2CDevLib [i2c11] and Cyanobyte [Fel20] convert
register maps and metadata into a basic device driver, but are limited to a manually
assembled dataset due to the lack of machine-readable sources. Similarly, many
projects in MDSE promise even more code generation [SGD08, ABFV13]. However,
they require very detailed datasets that are simply not publicly available.

In conclusion, the information extraction approaches are focused on generic inputs,
and cannot provide the domain-specific data found in technical documentation with
the necessary accuracy. The existing specialized data pipelines rely on machine-
readable data, which limits the extracted data to what the vendor provides, often
substituting required but missing or incorrect data with manual transcriptions and
patches. And finally, projects using code generators for their HAL or device drivers
are not sharing their efforts due to incompatible data sources, formats and pipelines.

A solution could be a data pipeline that combines multiple input sources, including
by table processing the technical documentation, to create the most complete dataset
possible in an automated, unsupervised process. As illustrated in Figure 4.7, the
database can be shared among multiple projects, so that improvements made by one
project can benefit all, which could significantly reduce development effort. However,
the difficulty of a solution exists primarily in accessing all data sources, especially
technical documentation, with a reasonable effort. We present a concise problem
statement that formulates what challenges such a design would need to solve in the
next section.

CMSIS
Header

CMSIS-SVD
Configuration

Tools
Technical

Documentation

+

1

Shared
Database

Zephyr
C

modm
C++

Embedded
Rust

2

3
Feature/
Bugfix

4
4

Figure 4.7 A data pipeline project 1 combining multiple input sources into a shared database
can help reduce overall development effort. 2 A single project using the database can 3 add
features or repair issues so that 4 all other projects benefit from the improvements.

46 4. Problem Statement

4.4 Problem Statement

We described many use cases in our scenario that all require a large amount of data,
most of which only exists in the technical documentation. While we found previous
work that extracts information from generic documents and many projects that feed
manually assembled data into template engines to code generate their HAL, we are
not aware of any solution that connects both. Thus, we identify a research gap
in terms of a data pipeline that fulfills the challenges outlined in Section 4.2. We
split this problem into four parts: accessing technical documentation, processing its
content, encoding the extracted information, and evaluating the quality of this data.

Since most technical documentation is available only as PDF, we first need to make
their content accessible in a structured form, which is a complicated task due to the
flat, print-oriented nature of the format. This process involves reverse-engineering
the vendor-specific formatting style to associate individual page elements with a part
of the structure and then converting that into a more suitable format. We need this
conversion to be fast enough to work through tens of thousands of PDF pages and to
yield reproducible results, so that we can make fine-grained, iterative improvements
to our pipeline and get timely feedback about the performance of our tuning. In
addition, the results need to be accurate enough so that the next steps have precise
enough information that represents the content of the original document faithfully.

We then need to process the now accessible technical documentation to find and
extract the information relevant to our use cases. However, the technical documen-
tation is not written to be consumed as a detailed database, but presents an abstract
and summarized view of the devices hardware optimized for human comprehension.
We therefore need to understand in what form the data we require is available and
what its encoding is. We already introduced the building blocks of technical doc-
umentation and table processing as an access paradigm. However, there is a large
amount of content to consider with different types of information that may require
additional context to interpret the content correctly, provided either externally by a
domain expert or derived from the document itself. Therefore, decoding and combin-
ing multiple tables and texts may be required to generate data that is both accurate
and detailed enough to substitute and augment machine-readable data sources.

Once we have the data for our use cases, we want to assemble it into a common
representation that encodes it unambiguously and provides access to it for code
generation tasks. These requirements calls for a format that can store and operate
on large amounts of data and still be discoverable and easy to use later. Our design
must also incorporate data provided externally through machine-readable sources to
detect and repair conflicts between the difference sources to create the best possible
dataset available.

After the design of a pipeline that achieves these requirements, we have to evaluate
the corresponding implementation. For this, we extract data from the technical
documentation that already exists in machine-readable form, so that we can prove
the ability of our design to create such detailed datasets and compare its accuracy
against it directly. Finally, suitable implementations should fulfill all the challenges
we formulated in Section 4.2. With this problem statement in mind, we outline our
contributions in the following section.

4.5. Contributions 47

4.5 Contributions

With our thesis, we achieve several contributions:

Our pipeline design and implementation provides detailed access to technical docu-
mentation PDF content, via low-level primitives, as a high-level abstract syntax tree,
and as HTML. In addition, we provide custom parsers for machine-readable data
such as CMSIS header and SVD files and proprietary configuration tool databases.
Even though, in this thesis, we specialize our implementation for data sources from
STMicro, the pipeline design is flexible enough to be adapted for other data sources.

We use table processing and text mining paradigms to extract and convert data
from the technical documentation in a deterministic process that yields completely
reproducible results. We evaluate the extracted data from the technical documen-
tation against machine-readable sources as well as check its internal consistency to
establish a method to merge multiple sources and arbitrate conflicts based on qual-
itative metrics. We also provide a detailed analysis of the quality, trustworthiness
and completeness of each data source, that can inform and guide future extraction
work. The extracted data is unambiguously encoded as a knowledge graph using a
custom ontology that describes the embedded hardware.

Our design is implemented as a pure Python package that handles all aspects of
the conversion process unsupervised. Our implementation is highly modular so that
parts of it can easily be reused for future projects. The source code is open-sourced
and maintained as part of the modm project [modm22].

With the challenges and requirements of our solution formulated, we describe the
design of our data pipeline in detail in the next chapter.

48 4. Problem Statement

5
Design

The goal of this thesis is to assemble a large, detailed and high-quality dataset of mi-
crocontroller hardware descriptions to support the use cases described in Section 4.1.
In this chapter, we introduce our design of a modular data processor to convert and
merge technical documentation, source code, and configuration tool databases into
a single knowledge graph that can then be accessed via simple or specialized APIs.
We start by giving an overview of the design in Section 5.1, before detailing the
individual transformation steps in Section 5.2. We conclude this chapter with a
description of the access methods to the resulting knowledge graph in Section 5.3.

5.1 Modular Data Processor Overview

In this section, we give an overview of the design that transforms and merges multiple
data sources into a shared representation annotated with domain-specific semantics.
Specifically, the input sources are technical documents in PDF and HTML format
and machine-readable data found in CMSIS and proprietary configuration tools and
the output is a large knowledge graph containing a data model that is optimized for
embedded software code generation.

The large variety in input and output formats and the many conversion steps between
them contributes to the difficulty of our processor design. To manage this complexity,
we split up the entire processor into six specialized data pipelines as described in
Figure 5.1. Each pipeline converts only one data format into another and buffers
the results in the respective archive, so that the individual conversion steps can be
performed independently of each other. This modular design also allows for manual
or automatic inspection of intermediary data between the stages to assess its quality
and tune the conversion process iteratively without rerunning the entire pipeline.
Consequently, the data processor can be composed of only those pipelines for which
data sources are available or additional pipelines not covered by in this section,
making our design easier to implement and universally scalable.

50 5. Design

The end result is a large number of small knowledge graphs that are evolved into a
single knowledge graph containing the entire dataset [TELN03, EAS13]. This final
knowledge graph can be accessed via a predefined API for simpler use in existing
code generation tools, converted into a standardized format such as CMSIS-SVD, or
used directly via a graph query language such as SPARQL (cf. Figure 2.14). In the
next section, we describe the tasks of each data pipeline.

Vendor

Vendor

1

1

PDF
Archive

PDF→HTML

2

HTML
Archive

HTML→OWL

3

HTML→SVD4

Header
Archive

Header→SVD

5
SVD

Archive
SVD→OWL

6

Config
Tools

DB→OWL

7

Internal External
OWL

Archive

8

Simple API

9

OWL→SVD

10

Graph Query

11

Figure 5.1 Data processor overview showing the internal pipelines on the left of the dotted
line and the external access methods on the right. First, 1 all data sources provided by
the hardware vendor are imported. Then, 2 the PDF technical documentation is converted
to HTML and 3 the relevant tables contained within extracted into a knowledge graph.
Additionally, the SVD memory maps are 4 extracted from the HTML, 5 CMSIS header
files, and vendor-provided SVD files to be 6 merged into an optimal representation and stored
as a knowledge graph. Finally, 7 the proprietary database (DB) contained in configuration
tools is also converted into a knowledge graph. Then, 8 the separate knowledge graphs are
evolved into one canonical knowledge graph by a merging strategy that corrects or at least
minimizes data conflicts. This final knowledge graph can then be 9 accessed externally via a
Python API, 10 converted into specialized formats such as SVD, or 11 accessed directly via
a knowledge graph query language.

5.2 Data Processing Pipelines

In this section, we describe the design of each pipeline in detail, what their input
and output formats are, which data they convert, and in what quality. We first
describe what vendor data is imported (1), then we focus on the more complex
pipelines that convert technical documentation (2 , 3 , 4), before we detail the
pipelines using machine-readable inputs (5 , 6 , 7). We end this section with a
description of the knowledge graph evolution (8). The access methods (9 , 10 ,

11) are described in the next section.

5.2. Data Processing Pipelines 51

5.2.1 Importing Vendor Data

Input: Raw input data from vendor website or repositories.
Output: Only the input formats relevant for our processor.

Our design uses four categories of input formats that are published by the vendors
themselves. Since our processor design is modular, it can still operate only on
technical documentation if other sources are not available. This is of particular
importance when machine-readable sources are unknown.

The technical documentation is published on the vendor website as PDFs and can
easily be scraped, since vendors do not typically authenticate access for public de-
vice documentation [Kul17]. The technical documents are also available from most
electronics distributor websites [Kul17], thus are highly proliferated.

The CMSIS header files are usually bundled with example source code and pub-
lished on the vendor website as an archive or source code repository. Since the
header files become part of the application code, they are typically published under
a very permissive license to allow their incorporation into proprietary applications.
An archive of header files therefore likely already exists as part of a HAL projects
foundations.

The CMSIS-SVD files are usually bundled with debug tools and published on the
vendor website or GitHub also with a permissive license. Similarly to the CMSIS
header files, an archive containing all vendor SVD files likely already exists.

The configuration tools are usually publicly available as well, however, finding and
extracting the underlying proprietary database can require reverse-engineering the
application, which may be prohibited by the license agreement. The extracted
database should therefore be kept private.

These categories cover the typical data sources for ARM Cortex-M vendors which
adhere to the standardized CMSIS formats. Additional vendor-specific data formats
can be converted into their a small knowledge graph via their own pipeline, for exam-
ple, parsing the source code of a C-based HAL to extract data not encoded anywhere
else. Now that we located all vendor-provided data, we can start converting it using
the pipelines we describe next.

5.2.2 Converting PDF to HTML

Input: Technical documentation as PDF.
Output: Technical documentation as HTML.

In this step we reverse-engineering the formatting style of the PDF to assign the
equivalent HTML semantics to characters, vector graphics, and images. The content
in the resulting HTML is then much easier to access for the next pipelines [CTT00,
LKM01, LPL04, ETL05]. Inspired by the extraction tasks of TEXUS (cf. Figure 4.6)
[RPS+18], we first abstract the PDF contents into an internal document model,
before locating table, figure and image areas using their caption [CD16] and vector
graphics shape [RCVF03], with the remaining areas containing only characters. We
then convert each content area separately into an abstract syntax tree (AST) to
cluster the PDF objects into a hierarchy first [RCVF03, CF04, SAM+18]:

52 5. Design

(i) Characters are first linked into horizontal and vertical lines based on their po-
sition and rotation [CF04], then grouped into headings, paragraphs, lists, and
annotations based on their line spacing, indentation, and font properties. Font
rendering and metadata information such as bold, italic, and linked characters
are also preserved.

(ii) Tables are segmented into a grid structure where cells can span multiple rows
and columns, either using the vector graphics [RCVF03] or using whitespace
analysis [RPS+18]. This grid structure is then converted into a table model,
where the header and data cells are identified through vector graphic and font
information.

(iii) Figures and images are converted into objects storing the caption and the
contained vector graphics, bitmaps, and characters as verbatim data. Unlike
tables, no processing of figures or images is possible at this stage, since we do
not know how to interpret the vector graphics or pixel data semantically.

Since PDF is a paginated format, these steps must be performed for each page
separately resulting in many small ASTs. These small ASTs now describe the logical
content hierarchy together with vital formatting metadata, such as text indentation
spacing to indicate lexical scope, that further contextualize the individual object
semantics. We then unpaginate the content by merging these small ASTs into one
large AST by using the text indentation information and the shape of the tree to
align the page beginning with the previous page end. The large AST is then modified
by a number of passes to align it further to the HTML content model, for example,
merging paginated tables back into one table, adding list beginning and end markers,
and coalescing individual characters rendering properties into groups. Serializing the
AST into a simple subset of HTML is performed by recursively walking the tree and
converting each abstract node into the HTML equivalent.

Due to the lack of reference data, the quality of the results must be assessed manually,
however, this requires no special tooling, since HTML is easily inspected by a plain
text editor and rendered by any web browser. Compared to previous work using
heuristics (cf. Section 3.1), this pipeline is tuned manually and creates reproducible
HTML output, which allows to iteratively improve the accuracy of the conversion
over time.

5.2.3 Converting HTML to OWL

Input: Technical documentation as HTML.
Output: Knowledge graphs modeled in OWL.

Since technical documentation regularly consists out of hundreds to thousands to
pages (cf. Section 2.1), we provide hierarchical access based on the chapter name,
heading, and table caption to speed up searching for texts and tables of interesting in
the entire HTML document. Once we discovered our content, a lightweight wrapper
allows for simple text mining of paragraphs and lists and gives access to table content
via the abstract table model described in Section 2.2.

Depending on the information we want to extract, we need to combine and clean up
data from multiple tables and texts and decide how to encode the result in a knowl-
edge graph. Especially important is the creation of an unambiguous encoding of the

5.2. Data Processing Pipelines 53

extracted information, which can be difficult for our domain of embedded software,
since there exists many entities that share the same name, but differ in relations.
For example, different packages can have the same pin name (modeled as an entity),
but the pin itself is connected to different signals (modeled as relations to signal
entities). Thus, when adding both pins to the same knowledge graph, the signal
relations are collapsed and now point to both pin’s signals, creating an ambiguity.
Therefore, we create one knowledge graph per data source and defer merging to a
later stage to preserve as much context as possible and prevent accidental ambiguous
encodings.

We want to exemplify the generic description of the pipeline’s design with the STMi-
cro technical documentation to give a better understanding of the process. The
datasets we describe here are chosen for their duplication in machine-readable sources
to the benefit of our evaluation. However, technical documentation usually contains
many more datasets that can be extracted using similar methods to those presented
in these examples:

Device identifiers from datasheets: The order information chapter near the end of
the datasheet contains a legend of STM32 order codes, that describes the meaning
of each entry and their possible values. We use this to create a list of all possible
identifier combinations via the n-fold cartesian product. However, this list overlaps
with other datasheet device lists, creating an ambiguity, therefore we filter it with the
partial identifiers from the device order table found in the introduction. This filtering
finally creates a true n-to-1 mapping of device identifiers to a specific datasheet.

Device identifiers from reference manuals: Since reference manuals apply to a larger
group of devices than datasheets, they do not contain order information and we
cannot recreate an exact list of device identifiers. Instead we find the first mention
of STM32.*? in the introduction, which acts as a filter for an externally provided
list of device identifiers that apply for this document. We defer the resolution of the
filter into a true n-to-1 mapping to the knowledge graph evolution stage (8), where
we have access to the device identifier lists from the datasheets and configuration
tools.

Interrupt vector table from reference manuals: The nested vector interrupt con-
troller (NVIC) chapter contains a table with a map of entry position to vector
names (cf. Figure 4.2). If multiple tables are found, the caption of the table contains
a device filter that cannot be resolved locally, since the reference manual does not
contain a list of device identifiers. Therefore, we encode all vector tables with the
device filter and defer their resolution to a later stage.

Device pinouts and pin signals from datasheets: The pin description chapter con-
tains a table that lists the pin number per package, pin name, type, structure, and
signal functions (cf. Figure 2.4). For the pinout, we map each package via a pin
number relation to the pin name in a process we described in Section 2.2. In some
tables, the pin numbers column contain additional device filters that must be re-
solved to unambiguously map the device identifier to the package. However, for the
pin signals, we also need to consider a number of separate alternate function tables
in the same chapter, which explicitly list the alternate function index for the signal,
rather than the sum of all signals. We combine these alternate function tables with
the additional functions column and map them to each pin.

54 5. Design

To avoid inter-document data conflicts, we create a separate knowledge graph en-
coding the extracted data for each document, whose quality can be more easily
manually verified due to the smaller scope. The knowledge graphs are modeled us-
ing OWL semantics, however, in this pipeline we only use it to store data in the
graph without adding any advanced features like meta-modeling or rule definitions
(cf. Section 2.4). We delegate the meta-modeling and merging of these small knowl-
edge graphs to stage 8 , which can evaluate all graphs at the same time to formulate
the best merging strategy.

5.2.4 Converting HTML to SVD

Input: Technical documentation as HTML.
Output: MMIO register descriptions encoded as SVD.

The reference manual contains the description of the MMIO register map as a series
of table and text patterns repeated for each peripheral (cf. Section 2.3.1). As a
starting point, we find the peripheral boundary address table (cf. Figure 2.9) in
the RCC chapter to build the address space mapping of the on-device peripheral
instances.

Then, for each peripheral chapter in the document, we perform the same four steps:

(1) Find and parse the register map summary table (cf. Figure 2.10).

(2) For each register name in the summary table, find the corresponding section in
the chapter (cf. Figure 2.11) and parse the register bit table as well as the bit
descriptions underneath to get the bit positions, bit names, and value ranges.

(3) We now have redundant information for register and bit names, positions, and
values, which we use to fix inconsistencies in the data by weighted voting to
create the most accurate register map version.

(4) We associate the completed register description with the instance name and
address in the peripheral boundary address table.

This pipeline formats the register map into a SVD file rather than a knowledge graph,
since SVD is standardized and there are a number of libraries and applications that
can operate on it directly [svd15d, rust16, ada15, svd15c] (cf. Section 3.3). The SVD
files from this pipeline are then merged with the vendor-provided SVD files and the
ones derived from the CMSIS headers separately in step 6 and converted into a
knowledge graph.

5.2.5 Converting Header Files to SVD

Input: CMSIS header files for C-language bindings.
Output: MMIO register descriptions encoded as SVD.

CMSIS header files are code generated C-language bindings that adhere to a strict
naming schema as defined by the generator tool (cf. Section 2.3.2). We illustrate
the four step process of parsing this file to recreate a register map with the CRC
peripheral definitions from Listing 2.5:

5.2. Data Processing Pipelines 55

(1) The peripheral base address is available in the CPP statement #define CRC

((CRC_TypeDef*)0x40023000) and equivalent to the entry in Figure 2.9.

(2) The peripheral register map from Figure 2.10 is generated as the C-language
struct CRC_TypeDef, with the reserved register at offset 0xC explicitly stated.

(3) The peripheral register bits from Figure 2.11 are formatted as CPP statements
#define CRC_CR_RESET (0x1 << 0).

(4) The peripheral register bit fields are part of the SVD standard, but not rep-
resented in the STM32 CMSIS header files. For example, the bit field values
for REV_IN[1:0] from Figure 2.11 are only available as individual bits instead
of numeric configuration values with names. However, if other vendors define
these bit fields as CPP statements, we can extract them here.

We store the extracted definitions in a tree data structure that is easy to serialize
into an SVD file. The header files also contain a number of other CPP macros that
describe additional device properties, which are added to the SVD file as well.

5.2.6 Converting SVD to OWL

Input: Multiple MMIO register descriptions encoded as SVD.
Output: Merged MMIO register descriptions modeled in OWL.

At this step, three register descriptions of varying resolutions and qualities exist:
(a) extracted from technical documentation, (b) converted from the CMSIS header
files, and (c) provided by the vendor. We merge these three representations into one
by filling in missing and eliminating wrong information via majority voting.

However, as we will discuss in depth in Chapter 7, some data conflicts are decided by
only two sources if the third one is missing the data point altogether. In that case, we
manually specify an arbitration strategy by categorically trusting one source more
than the other or by patching one source before merging. Since creating patches
requires a lot of manual effort, we can use it only as a last resort to repair the
wrong data patterns with the highest occurrence, which limits the effectiveness of
this approach.

This process results in a version with the most accurate and complete data overall
and the highest resolution and fidelity per device. At this point we convert the
register description into a knowledge graph.

5.2.7 Converting Tooling Data to OWL

Input: Tool database in various machine-readable formats.
Output: Knowledge graphs modeled in OWL.

Configurations tools often contain easily accessible and internal databases with de-
tailed information on the vendor’s devices. For STMicro, the STM32CubeMX con-
figuration tool described in Section 2.3.3 contains an XML database, from which
we extract the (a) device identifier list, and for each device the (b) packages and
pinouts, (c) pins and signals, and (d) interrupt vector table.

56 5. Design

The same caveats about choosing an unambiguous knowledge graph modeling dis-
cussed in Section 5.2.3 applies to this data too, therefore we reuse the class structure
and encode each device in a separate knowledge graph.

5.2.8 Evolving OWL

Input: Multiple knowledge graphs modeled in OWL.
Output: A single knowledge graph modeled in OWL.

The previous steps have now created various knowledge graphs, which this step
transforms into more accurate and consistent knowledge graphs. At this point, we
must finally resolve the issues with ambiguous encoding that we deferred from the
previous steps, by carefully deciding which entities are equal and can be merged and
which ones need to be placed in a namespace to preserve their information. With
this in mind, we perform the following transformations:

(i) Filtering the very large list of all possible device identifiers from the datasheets
with the list of devices from STM32CubeMX that STMicro actually produces:
We can then use this list to resolve the device filters for the reference manuals,
resulting in a complete n-to-1 mapping of device identifier to datasheet and
reference manual.

(ii) Merging data generated from the datasheets and reference manuals with data
from STM32CubeMX to create the most accurate version of the package
pinouts, pin functions, and the interrupt vector table: This step compares all
sources and chooses the best data combination based on an manually written
selection algorithm in combination with data patches and statistical metrics.

(iii) Deduplicating data and determining its inter-compatibility: For example, col-
lapsing all peripheral register descriptions into a minimal compatible set is
particularly helpful for deciding how many different HAL drivers at what level
of specialization need to be written to cover all devices we want to support, as
described in Section 4.1.

(iv) Inferring new relations between entities added from different sources: For ex-

ample, in Figure 2.13, we added an
enable−−−→ relation between register bits and

pin signals, so that the code generator can use this information directly (cf.
Section 2.4). By adding this data at this stage where we have access to all
data, we can detect emerging patterns and discover new edge cases that may
be invisible when focusing on a smaller group of devices.

To make the transformations reproducible, we do not modify existing knowledge
graphs in-place, but create a single new graph and copy the transformed data over.
This knowledge graph contains the most compact representation of the data, with all
compatible entities deduplicated and all non-compatible entities namespaced with
their respective scope, usually the device identifier. This extensive graph is then
considered to be the final and definitive data source for the external access methods
described in the next section.

5.3. Accessing OWL 57

5.3 Accessing OWL

The knowledge graph resulting from the pipeline contains the sum of all device data,
resulting in a large graph with multiple namespaces to prevent ambiguity. Embedded
software developers may not be familiar with semantic web concepts and implemen-
tations and may find accessing the knowledge graph directly too complicated or
tedious when handling the scenarios describing in Section 4.1.

We therefore provide 9 a software wrapper API that presents a simpler data en-
coding optimized for the code generation use cases presented in our scenario. For
example, given a specific device identifier, the interrupt vector table can be returned
as a map of integer to string, which makes it easier to convert to a generated array
in the firmware. Similarly, given a device identifier, 10 an SVD file is produced
from the register description in the graph, which can then be passed to existing
tools such as debuggers or language binding generators. Embedded developers with
previous experiences of knowledge graphs may use 11 a graph query language such
as SPARQL to modify, extract, and format the data they are interested in for their
specific HdS scenario.

For advanced use cases, we expect developers to convert the relevant subset of the
graph data into an intermediary data format that contains only the information
relevant to the task in an encoding that is optimal for it. If issues with the graph
structure or data quality are discovered that require the graph model to be changed,
thus breaking backwards compatibility, the indirect access via a software wrapper
gives an opportunity to transparently pass the fixes along or to choose an upgrade
path compatible with the use case.

In this chapter, we broke down the complex process of converting and merging
multiple data sources into self-contained pipelines that each perform a manageable
number of tasks. This modular design can be tailored to operate only the specific
data sources a vendor publishes and can be extended to include new data sources
and new hardware devices in the future. Our intermediary archives give many op-
portunities to peek into the data between the pipelines with just a text editor and
a web browser to verify and tune the effectiveness of each conversion step individu-
ally. The resulting knowledge graph contains the most accurate and highest fidelity
dataset by merging the best of all data sources together. Finally, we described how
we provide a simplified API access for common use cases. The following chapter
presents a look at the actual implementation of this design.

58 5. Design

6
Implementation

After we introduced the modular design of our pipeline, we elaborate the concrete
implementation in this chapter, starting with a detailed explanation of how each
data format is accessed and converted in Section 6.1. We conclude this chapter with
a description of the resulting knowledge graph ontology and how to access the data
stored within in Section 6.2.

6.1 Data Processing Pipelines

In this section, we present how we access the individual data formats and convert
them in the same order as specified in Figure 5.1. Even though our design uses
separate pipelines for each conversion, we specifically placed all code into a single
Python 3.9 project with one submodules for each format and each conversion to
maximize code reuse. We further split each submodule into a vendor-agnostic part
for shared algorithms and data structures and a vendor-dependent part in anticipa-
tion of future vendor specializations. To speed up the conversion process, we use
multi-processing as a substitute for multi-threading, which works works well for our
use case of converting many individual files. All code is published as an open-source
project on GitHub [modm22].

6.1.1 Importing Vendor Data

The four main data sources described in Section 5.2.1 are all publicly accessible on
the vendors website as downloadable archives or on GitHub as source repositories:

(i) The technical documentation is published on the STMicro homepage [stm07],
spread across multiple subpages with their metadata collected in a number of
JavaScript object notation (JSON) files. A Python script collects all metadata
and compares it to the local archive to download all documents, specifically

60 6. Implementation

reference manuals, datasheets, user manuals, technical notes, data briefs, ap-
plication notes, errata sheet, and programming manuals as of June 2022 (cf.
Section 2.1). The documentation copyright prohibits republication without
written consent, therefore we store the archive in a private Git repository.

(ii) The STM32CubeMX database is published by STMicro on GitHub [stm20]
with the stated intention of being used as a data source for HdS code genera-
tion. We import v6.5.0 of the database.

(iii) The CMSIS header files for STM32 are published by STMicro on GitHub
[stm19] and further aggregated in a single repository by the modm project
[modm17]. We import the latest revision of each header file as of June 2022.

(iv) The CMSIS-SVD files for STM32 and other ARM Cortex-M vendors are ag-
gregated by open-source contributors from various sources into a single GitHub
repository [svd15a]. We import the latest revision of each SVD file as of June
2022.

The machine-readable input sources are all available as Git repositories, since they
are already used by a number of projects and tools (cf. Section 3.3), while the tech-
nical documentation can be downloaded from the STMicro homepage without access
limitations. Therefore, all necessary data for our processor can be acquired using
only an internet connection on commodity hardware with moderate data storage
requirements.

6.1.2 Accessing PDF

To access the low-level data structures of the PDF documents described in Sec-
tion 2.1, we built a small content abstraction model on top of the pypdfium2 v1.9.1
Python bindings [pdf21] to the C++ PDFium library [pdf13b]. ¬The PDF object
stream exposes a rich hierarchical content model [pdf08] that we have only partially
abstracted, in particular, we did not implement any content modification methods,
since we only read the PDFs. We give a brief overview of the important classes in
the API:

The Document class contains a metadata catalog of standardized keys, such as
author, producer, and creator, which can be used to identify the vendor and the
visual style of the PDF document [pdf08]. The table of content yields the names
and page numbers of all chapter and section headings without needing to parse the
document first, which is useful for splitting a document into sections for parallel
processing [pdf08].

The Page class uses the dimension and rotation information to scale the content via
affine transformation into a normalized view, so that our conversion code can ignore
page and content orientations [pdf08]. The page content is placed in a tree data
structure that provides an efficient spatial access, since the conversion process often
queries small areas of the page, for example, when converting table cell content.

The Character class binds a Unicode point to a specific font to render a single glyph
at a position and angle with font size, fill, and stroke colors [pdf08]. To understand
what area is used by a glyph, bounding boxes are provided: the loose bounding

6.1. Data Processing Pipelines 61

box is the maximum space any glyph in the font can use, while the tight bounding
box is the actual space it takes [pdf08]. Similar glyph rendering effects can also be
achieved using combinations of different parameter settings [pdf08]. For example, to
render differently sized glyphs, one font can be scaled up and down, or a different
font can be used for every scale to the same effect. The choice is up to the PDF
creator program, which can be identified from the metadata.

The Path class holds vector graphics defined by a list of points that can be jumped
to or rendered as a line or bezier curve with a width, fill, and stroke colors, based
on the Postscript language [pdf08]. The point positions are normalized by resolving
all affine transformation matrices in the rendering instructions.

In addition, there exists an Image class to render bitmaps and a Link class to model
inter-document and web references. With this abstraction in mind, we present our
PDF to HTML conversion algorithm next.

6.1.3 Converting PDF to HTML

This pipeline is the most complex part of our design. Therefore, we break down the
pipeline into many small steps that each perform a specialized operation. Since we
need to reconstruct the content of the entire PDF document without any formatting
or structural hints, we make a few simplifying assumptions that reduce the practical
implementation effort without any effect on the conversion accuracy:

(i) The formatting style remains identical throughout the entire document, which
allows for detecting the style per document metadata, rather than page con-
tent.

(ii) Tables and figures are marked with captions and the separation between tables,
figures and text is clearly defined. Table cells in particular are encapsulated
on all sides by a border rendered in vector graphics. We can therefore limit
the use of heuristic whitespace analysis to detect tables and reconstruct their
structure.

(iii) Characters are placed only horizontally and vertically rotated 90◦, and not at
arbitrary angles, and their Unicode point equals their glyph. This assumption
simplifies text line detection and avoids the use of OCR.

For STMicro documents, which are the primary focus of our implementation, we
detect two rendering styles via the document metadata creator tag, which we call
black/white and blue/gray. The differences between these styles lie in their color
scheme and table rendering style, as well as several magic numbers such as line and
paragraph spacing, heading sizes, sub-/superscript offsets, and content areas inside
a page. These style variations are passed as arguments to the conversion algorithm,
which operates on the PDF abstraction model described in Section 6.1.2. In the
following, we list the individual steps of this algorithm:

(i) Detect page layout: Some datasheets have a two-column layout on the first
pages, which we can detect by probing for characters in specific parts of the
page. The subsequent steps operate on each detected content area separately.

62 6. Implementation

(ii) Detect text lines: We convert individual characters into horizontal and vertical
lines depending on rotation by coalescing their origin positions. Next, we merge
the super- and subscript character into their corresponding lines by checking
for bounding box overlap and comparing font sizes.

(iii) Detect graphic areas: All paths and images are clustered into the smallest pos-
sible areas based on overlapping bounding boxes. The figures in the blue/gray
style documents lack a frame box, but have a minimum guard distance to the
next element, so we also consider characters close to graphics in our clustering
algorithm.

(iv) Partition page content: We find tables and figures via their bold caption and
assign it to the correct graphic cluster from the previous step. The remaining,
uncaptioned graphic clusters are categorized by analyzing the path patterns:
table paths are rectangular paths that overlap in specific ways, while figures
contain bezier curves and intersect each other [RCVF03]. To detect register
bit tables (cf. Figure 2.11), we check for a row of numbers above the cluster
bounding box.

(v) Detect table structure: We convert the table structure into an abstract model
using the vector graphics: based on the horizontal and vertical lines we create
a cell grid [RCVF03] and then merge cells together depending on their graphic
borders. Additional cell properties such as fill or stroke colors are currently
ignored. For the numbers on top of the register bit tables, we add a virtual
row and columns based on the whitespace between the character clusters.

(vi) Detect text structure: The content areas not detected as tables or figures
now only contain text. We categorize each text line into headings, paragraphs,
lines, lists, note/caution/warning annotations, and register bit descriptions.
The category type is decided by regex matching the text line beginning and
since each category can span multiple lines, we use the AST (cf. Section 5.2.2)
to store the context necessary to detect when a category begins and ends and
to arbitrate ambiguous formatting as best as possible. Tables and figures are
also added to the AST in this step at the right place, with each table cell
getting their own small AST to detect the text structure.

(vii) Merge area ASTs: We create one large AST by inserting the page area AST
so that the local scope continues correctly. This unpagination requires finding
the node that matches the current category and indentation. For example, an
area starting with a list entry must be matched to the correct list or sublist
scope at the end of the previous area.

(viii) Rewrite AST: To further align the AST with the HTML content model, we
run several small algorithms over the tree structure to rewrite it. We list the
most important operations here:

(a) We unflatten sequential list elements into a hierarchical group structure
as is expected by the HTML list tags.

(b) We convert the bit register descriptions into virtual tables. The descrip-
tions were not detected as a table, since they have no borders, so they
were treated as text, until we can rewrite this here.

6.1. Data Processing Pipelines 63

(c) We merge tables spanning multiple pages into one table, by aligning their
grids and concatenating the cells. We also merge two 16-bit wide register
bit tables into one 32-bit wide table to provide easier access later on.

(ix) Serialize AST into HTML: The AST is now very similar to HTML, so we
can walk the tree recursively and convert each node into its HTML equivalent.
Only at this last step do we work with individual characters by merging their
rendering properties into a compact range and converting it to bold, italic,
super- and subscript, and newline HTML tags.

This is information on a product in full production.

September 2017 DocID029162 Rev 6 1/208

STM32F413xG STM32F413xH

Arm®-Cortex®-M4 32b MCU+FPU, 125 DMIPS, up to 1.5MB Flash,

320KB RAM, USB OTG FS, 1 ADC, 2 DACs, 2 DFSDMs
Datasheet - production data

Features

• Dynamic Efficiency Line with eBAM (enhanced
Batch Acquisition Mode)

– 1.7 V to 3.6 V power supply

– -40 °C to 85/105/125 °C temperature range

• Core: Arm® 32-bit Cortex®-M4 CPU with FPU,
Adaptive real-time accelerator (ART
Accelerator™) allowing 0-wait state execution
from Flash memory, frequency up to 100 MHz,
memory protection unit, 125 DMIPS/
1.25 DMIPS/MHz (Dhrystone 2.1), and DSP
instructions

• Memories

– Up to 1.5 Mbytes of Flash memory

– 320 Kbytes of SRAM

– Flexible external static memory controller
with up to 16-bit data bus: SRAM, PSRAM,
NOR Flash memory

– Dual mode Quad-SPI interface

• LCD parallel interface, 8080/6800 modes

• Clock, reset and supply management

– 1.7 to 3.6 V application supply and I/Os

– POR, PDR, PVD and BOR

– 4-to-26 MHz crystal oscillator

– Internal 16 MHz factory-trimmed RC

– 32 kHz oscillator for RTC with calibration

– Internal 32 kHz RC with calibration

• Power consumption

– Run: 112 µA/MHz (peripheral off)

– Stop (Flash in Stop mode, fast wakeup
time): 42 µA Typ.; 80 µA max @25 °C

– Stop (Flash in Deep power down mode,
slow wakeup time): 15 µA Typ.;
46 µA max @25 °C

– Standby without RTC: 1.1 µA Typ.;
14.7 µA max at @85 °C

– VBAT supply for RTC: 1 µA @25 °C

• 2x12-bit D/A converters

• 1×12-bit, 2.4 MSPS ADC: up to 16 channels

• 6x digital filters for sigma delta modulator,
12x PDM interfaces, with stereo microphone
and sound source localization support

• General-purpose DMA: 16-stream DMA

• Up to 18 timers: up to twelve 16-bit timers, two
32-bit timers up to 100 MHz each with up to
four IC/OC/PWM or pulse counter and
quadrature (incremental) encoder input, two
watchdog timers (independent and window),
one SysTick timer, and a low-power timer

• Debug mode

– Serial wire debug (SWD) & JTAG

– Cortex®-M4 Embedded Trace Macrocell™

• Up to 114 I/O ports with interrupt capability

– Up to 109 fast I/Os up to 100 MHz

– Up to 114 five V-tolerant I/Os

• Up to 24 communication interfaces

– Up to 4x I2C interfaces (SMBus/PMBus)

– Up to 10 UARTS: 4 USARTs / 6 UARTs
(2 x 12.5 Mbit/s, 2 x 6.25 Mbit/s), ISO 7816
interface, LIN, IrDA, modem control)

– Up to 5 SPI/I2Ss (up to 50 Mbit/s, SPI or
I2S audio protocol), out of which 2 muxed
full-duplex I2S interfaces

– SDIO interface (SD/MMC/eMMC)

– Advanced connectivity: USB 2.0 full-speed
device/host/OTG controller with PHY

– 3x CAN (2.0B Active)

– 1xSAI

• True random number generator

• CRC calculation unit

• 96-bit unique ID

• RTC: subsecond accuracy, hardware calendar

• All packages are ECOPACK®2

Table 1. Device summary

Reference Part number

STM32F413xH
STM32F413CH STM32F413MH STM32F413RH
STM32F413VH STM32F413ZH

STM32F413xG
STM32F413CG STM32F413MG STM32F413RG
STM32F413VG STM32F413ZG

UFQFPN48
(7x7 mm)

UFBGA100
(7x7mm)

UFBGA144
(10x10mm)

LQFP100 (14x14mm)
LQFP144 (20x20mm)

LQFP64 (10x10mm)WLCSP81
(4.039x3.951 mm)

www.st.com

Document: DS11581

Heading 1: STM32F413xG

Paragraph: Arm-Cortex-M4

Heading 3: Features

List: •
Element: Dynamic

List: -

Element: 1.7 V to

Element: -40 °C to

Element: Core Arm 32-bit

Element: Memories

List: -

Element: Up to 1.5

Element: 320 Kbytes

Element: Flexible

Element: Dual mode
...

Element: General purpose

Figure: omitted

List: •
Element: Up to 18 timers

Element: Debug mode

List: -

Element: Serial

Element: Cortex-M4
...

Element: All packages

Table 2x3: Device summary

Figure 6.1 The debug view of the first page of the STM32F413 datasheet [DS11581] as well
as a simplified excerpt of the resulting AST. This document shows a multi-column layout with
multi-line nested lists, a figure without caption at the top right and a captioned table at the
bottom. Note the insertion of the omitted figure in the middle of the list, which is the correct
outcome of merging the two column ASTs, despite the strange look.

To speed up conversion and to limit the resulting HTML file sizes, we use the table
of content to split up each document into chapters and convert them in parallel.
The resulting HTML files are then stored in a folder named after the document. A
minimal style sheet renders the HTML file in a web browser in a similar way as the
original PDF document for a manual visual comparison. With this step, we conclude
the conversion of PDF technical documentation into HTML.

64 6. Implementation

Conversion Challenges

During the implementation, we found several issues in the STMicro documents that
we had to find workarounds for that limit the accuracy of the conversion. We expect
documents from other vendors to present similar challenges to the implementation:

• Some documents have empty or corrupted metadata, which prevents the de-
tection of vendor and rendering style. We provide a manual mapping from
document name to vendor and style as a substitute in step (i).

• None of the documents use the size parameter to scale their characters, instead
including a separate font for each size and setting the size parameter to 1. As
a workaround, we use the height of the loose bounding box as a proxy for the
font size in step (ii).

• Rotated characters have an empty loose bounding box, which breaks our font
size workaround. We can use the tight bounding box as a fallback, however,
its height depends on the rendered glyph, making this an unreliable solution
when merging large super- and subscript glyphs into text lines with smaller
glyphs. We therefore added an cache that matches the tight bounding box and
unicode value to non-rotated characters and uses their loose bounding box as
a substitute in step (ii). Since the cache only contains characters previously
seen, this workaround of a workaround can still result in the occasional wrongly
merged line.

• Tables borders are rendered as filled rectangles in the black/white style, but
as stroked lines in the blue/gray style. We therefore convert the black/white
rectangles to lines before passing it to the table partitioning algorithm in step
(v).

• In some documents, tables are missing cell borders, which confuses our table
partitioning algorithm in step (v), leading to wrongly merged cells. Due to
the difficulty in discovering and fixing these issues automatically, we instead
opted to manually write patches that are applied to the resulting HTML files
automatically by our pipeline, therefore maintaining reproducible results.

At the end of this step, we have a folder of files that only use a subset of the HTML
syntax in a predictable way. In particular, headings use normalized sizes (<h1>,
. . . , <h6>), lists use the correct indexing scheme (ordered vs. unordered),
and the <table> tag is used only for tables and not for layout, to avoid issues
in the detection of symbolic tables (cf. Section 3.1.1). This normalized HTML is
now simpler to access than the PDF and its use of syntax is independent of vendor
formatting style, which makes accessing the HTML for table processing significantly
easier, as we describe next.

6.1.4 Accessing HTML

We use the HTML parser built into Python to receive a stream of opening and clos-
ing tags and all text inbetween. Due to the simplified HTML syntax, we can directly
convert the stream into a thin abstraction of Figure, Table, and Text Python class.

6.1. Data Processing Pipelines 65

The Text class, which is further specialized into Heading, List, and TableCell, pro-
vides methods for basic text mining via regex matching and substitutions, while the
Table class presents three main access methods to the tabular structure to facilitate
table processing (cf. Section 2.2):

(i) Column-row access: The most basic access simply provides the cell at position
(x, y) without regard for header structure and therefore may return the same
merged cell for multiple positions. This raw grid access may be necessary if the
table lacks a header or if the header structure and cell partitioning complicates
proper conversion into a data model.

(ii) Boxhead-row access: We generate the labeled domains for the boxhead and
then convert each row into a dictionary of domain-cell pairs returned as a
list. This access method is useful when the stub cannot be unambiguously
identified, for example, if every table column contains cells with duplicate or
empty values that would create an ambiguous value-row mapping otherwise.

(iii) Boxhead-stub access: We dedicate one or multiple columns as the stub and
can now generate the partial function δ that provides attribute-cell pairs as
intended by Wang (cf. Figure 2.6 and Listing 2.1).

The formatting HTML tags in the text are all preserved until there is enough context
to decide how to interpret them via a substitution function of the Text class. In
particular, table cells can format lists as comma-, slash-, or newline-separated values,
therefore the code guiding the table processing must decide what meaning

and other characters have locally, based on the data getting extracted. Additional
cleanup or filtering functions on the output are delegated to the calling code.

6.1.5 Converting HTML to OWL

To simplify the data extraction process, we wrap the HTML documents into Python
classes based on their type: datasheet or reference manual. We then write several
algorithms that run on each document to extract the data using the HTML access
methods, clean and filter it, and convert it into OWL format. This approach works
especially well if combined with assertion checks to validate the assumption that all
documents of the same type have a similar structure. Running this shared code on
all documents will then quickly show where and why these assumptions are wrong,
allowing fast and simple iteration. In this section, we will detail a number of data
processing steps that achieve the design described in Section 5.2.3:

We extract the device identifiers from the order information displayed in Figure 6.2.
The contained graphics are interpreted as a table with a broken cell structure, there-
fore we repair the table with a specialized AST pass in the previous pipeline. We
then use the column-row access method and HTML filtering methods to create a
key-value map by finding lines with a = sign for values and without for keys. The
concatenated n-fold cartesian product of this mapping then yields all possible iden-
tifier combinations, which are filtered through the device summary table seen at
the bottom right of Figure 6.1. Since the order information naming schema varies
slightly across all datasheets, we use our own modified schema.

66 6. Implementation

Example STM32 G 071 K 8 T 6 xyy

Device family

STM32 = Arm® based 32-bit microcontroller

Product type

G = general-purpose

Device subfamily

071 = STM32G071

Pin count

E = 25

G = 28

K = 32

C = 48

R = 64

Flash memory size

8 = 64 Kbytes

B = 128 Kbytes

Package type

I = UFBGA

T = LQFP

U = UFQFPN

Y = WLCSP

Temperature range

6 = -40 to 85°C (105°C junction)

7 = -40 to 105°C (125°C junction)

3 = -40 to 125°C (130°C junction)

Options

xTR = tape and reel packing; x = N (“N” product version), otherwise blank

x˽˽ = tray packing; x = N (“N” product version) or blank

other = 3-character ID incl. custom Flash code and packing information; x = N for “N” product version

Platform: STM32

Family: G0

Name: 71

Pin: K

Size: 8

Package: T

Temperature: 6

Variant: N

Figure 6.2 The order information on the left details all possible combinations of identifier
values [DS12232]. Note the ambiguous Options key, with multiple = signs and overlapping
meanings, which needs to be treated specially. We normalize the order information into the
naming schema on the right.

We use the boxhead-stub access to extract the interrupt vector table with only
minimal normalization effort (cf. Figure 4.2). However, some reference manuals
contain multiple interrupt vector tables with device filters in the captions, which we
attach to the data to be specialized for the respective device group in the knowledge
graph evolution stage.

We extract the package and pinout data with the boxhead-row access method and
repair and normalize both the package as well as the pin name. The package names
are de-facto standardized and the pin names follow a manually detectable pattern,
therefore we can use a regex pattern to detect and fix all mistakes.

The pin signals are located in the alternate function table seen in Figure 6.3 and
accessed via the boxhead-stub method. However, to limit the table width each cell’s
signal name list has newlines inserted in it, which can lead to issues when a newline
is used as the list delimiter instead of a comma or slash. In these rare cases, we use
a manually supplied list of regex substitution patterns to repair wrongly separated
signal names.

After normalization, all data is converted into OWL via the owlready2 v0.37 Python
library [Lam17, owl17] using the ontology described in Section 6.2. We found that
the extraction of tabular data from the STMicro technical documentation worked
very well in practice since the table captions and header structures were very similar

6.1. Data Processing Pipelines 67

PA12 -
TIM16_

CH1
- - - - TIM1_CH2N

USART1_

RTS_DE

COMP2

_OUT
CAN_TX

TIM4_

CH2
TIM1_ETR -

USB_
DP

EVENT

OUT

PA13
SWDIO

-JTMS

TIM16_

CH1N
-

TSC_
G4_IO3

-
IR_
OUT

-
USART3_

CTS
- -

TIM4_

CH3
- - -

EVENT

OUT

PA14
SWCLK

-JTCK
- -

TSC_
G4_IO4

I2C1_
SDA

TIM8_
CH2

TIM1_BKIN
USART2_

TX
- - - - - -

EVENT

OUT

PA15 JTDI

TIM2_
CH1_
ETR

TIM8_
CH1

-
I2C1_
SCL

SPI1_
NSS

SPI3_NSS,

I2S3_WS

USART2_

RX
-

TIM1_
BKIN

- - - -
EVENT

OUT

Table 14. Alternate functions for port A (continued)

Port

&

Pin

Name

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF14 AF15

Figure 6.3 An excerpt of an alternate function table [DS9118] which shows the forced use of
newlines inside signal names to limit the table width. Note the inconsistent use of - vs. , as
the list delimiter in the AF0 and AF6 columns.

across all documents. However, data stored in textual descriptions does not share
these properties, as we will discuss in the step.

6.1.6 Converting HTML to SVD

The MMIO register descriptions are compiled in the reference manual and their
extraction is implemented as several algorithms in the document Python wrapper, as
described in Section 6.1.5. From the register boundary address table (cf. Figure 2.9)
we derive the peripheral instance names, their bus and address ranges, and most
importantly, a reference to the chapter that describes their register layout.

In these referenced chapters, we then combine multiple tables to derive the correct
peripheral register layout. At times, this approach involves parsing multiple layouts
depending on a device filter as exemplified in Figure 6.4, or discovering additional
instance-specific boundary address offsets shown in Figure 6.5 that need to be prop-
agated back into the boundary address table. Some register summary tables show
a condensed view of register arrays either via formulas in the offset column, or via
horizontal or vertical dots in the cells themselves, which we expand into a normal-
ized view. Missing table cell borders are a common source of errors at this stage,
particularly between the reset values and the bit name, as visible in the second table
in Figure 6.4. We cannot reliably detect and remove the spurious zeros and ones
inserted into the bit name, therefore we manually patch the HTML to insert the
missing separation.

We then find the correct subsection of the chapter that describes the individual
registers in more details (cf. Figure 2.11) by searching the subsection heading for
the register name, which worked well for simple peripherals where an exact match
was easily found. However, for more complex peripherals, particularly ones with
many similar registers, we saw occasional discrepancies between how the register is
named in the register summary table and the subsection, usually to de-duplicate the
description of multiple registers into one subsection. In these cases, we first tried to
guess the de-duplication pattern with a reverse regex matching, where a lower-case x
in the register name usually denotes a wildcard, without particularly useful results,
since subsections did not always contain the x either. We then measured the edit
distance between the register name and all subsection names to try and find the
closest match, however, since register names are usually short and somewhat similar

68 6. Implementation

Table 31. PWR - register map and reset values for STM32F405xx/07xx and STM32F415xx/17xx

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0x000
PWR_CR

Reserved V
O

S

Reserved

F
P

D
S

D
B

P

PLS[2:0]

P
V

D
E

C
S

B
F

C
W

U
F

P
D

D
S

L
P

D
S

Reset value 1 0 0 0 0 0 0 0 0 0 0

0x004
PWR_CSR

Reserved

V
O

S
R

D
Y

Reserved B
R

E

E
W

U
P

Reserved B
R

R

P
V

D
O

S
B

F

W
U

F

Reset value 0 0 0 0 0 0 0

Table 32. PWR - register map and reset values for STM32F42xxx and STM32F43xxx

Offset Register 3
1

3
0

2
9

2
8

2
7

2
6

2
5

2
4

2
3

2
2

2
1

2
0

1
9

1
8

1
7

1
6

1
5

1
4

1
3

1
2

1
1

1
0 9 8 7 6 5 4 3 2 1 0

0x000
PWR_CR

Reserved
U

D
E

N
[1

:0
]

O
D

S
W

E
N

O
D

E
N

V
O

S
[1

:0
]

A
D

C
D

C
1

R
e

s
e

rv
e

d

M
R

U
D

S

L
P

U
D

S

F
P

D
S

D
B

P

PLS[2:0]

P
V

D
E

C
S

B
F

C
W

U
F

P
D

D
S

L
P

D
S

Reset value 1 1 1 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0

0x004
PWR_CSR

Reserved

U
D

R
D

Y
[1

:0
]

O
D

S
W

R
D

Y

O
D

R
D

Y

R
e
s
e
rv

e
d

V
O

S
R

D
Y

Reserved B
R

E

E
W

U
P

Reserved B
R

R

P
V

D
O

S
B

F

W
U

F

Reset value 0 0 0 0 0 0 0 0 0 0 0

Figure 6.4 These power (PWR) peripheral register summary tables are similar enough to be
listed in the same reference manual chapter, but different enough that they required separate
tables with device filters in their captions. Note the missing cell table border between the reset
values and the bit names in the bottom right of the second table, which causes the cells to be
merged and corrupting the bit name [RM0090].

Offset Register

0x000 - 0x04C ADC1

0x050 - 0x0FC Reserved

0x100 - 0x14C ADC2

0x118 - 0x1FC Reserved

0x200 - 0x24C ADC3

0x250 - 0x2FC Reserved

0x300 - 0x308 Common registers

Figure 6.5 The ADC1, ADC2, ADC3 peripheral and common registers all share the same
boundary base address and only in the peripheral chapter are these additional offsets specified.
Our parsing code must account for such special cases and keep track of offsets at multiple
levels of our tree data structure [RM0033].

already, this technique often resulted in multiple matches of the same distance, which
then required manual intervention.

Additionally, once the mapping was established, we found that some registers can
have multiple roles and therefore also multiple descriptions within the same sub-
section, which confused our algorithm that had to look for certain keywords in the

6.1. Data Processing Pipelines 69

text and recognize tables without captions by structural patterns. Some register bit
table description were also missing cell borders as shown in Figure 6.6 or exhibiting
other formatting mistakes, which required even more HTML patches.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res.
PEC

BYTE
AUTOE

ND
RE

LOAD
NBYTES[7:0]

rs rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NACK STOP START
HEAD1

0R
ADD10

RD_
WRN

SADD[9:0]

rs rs rs rw rw rw rw rw rw rw rw rw rw rw rw rw

Figure 6.6 This I2C register description table with missing cell borders does not survive the
conversion into HTML intact and needs to be patched manually [RM0431].

On their own, each problem was easily addressable by adding an edge case for the
specific chapter in specific document or by crafting an HTML patch, however, the
sheer mass of register descriptions in each reference manual turned this manual cor-
rection process into an unreasonable effort, even when the relative error rate was
low. The quality improvement we could have achieved by comparing multiple rep-
resentations of the same register simply did not measure up against the additional
complexity of the extraction process. Thus, we abandoned our data merging ap-
proach and only use the register layout extracted from the summary table going
forward.

We convert all information into a lightweight tree data structure with custom Python
classes as nodes for Device 3 Peripheral 3 Register 3 BitField as defined in the SVD
format [svd15b] that also contain additional metadata such as device or instance
filters. To link the peripheral instances to the register descriptions including offset
correction, we run several small tree algorithms on this structure that results in
a normalized tree without instance filters. As a final step, we resolve the device
filters by manually partitioning the device list into subsets and filtering the tree
nodes, resulting in multiple register description trees per reference manual. The tree
structures then trivially serialize into a XML format that fits the SVD standard.

Even though we could not completely implement the redundant extraction in our
design for this step (cf. Section 5.2.4), the data from register summary table is
complete enough to be compared with the STMicro CMSIS header and SVD files
for our evaluation in Chapter 7. We also could not extract the textual register and bit
field descriptions as well as all enumerated bit field values and their corresponding
descriptions (cf. Figure 2.11). However, the CMSIS header and SVD files from
STMicro also do not contain all of this information either, therefore the impact on
our processor as a whole is minimal. For other vendors, these data sources may be
structured differently, so that a higher level of detail can be more easily extracted.
We continue our implementation with the parsing of the CMSIS headers.

6.1.7 Converting Header Files to SVD

We access the header file data via the CppHeaderParser v2.7.4 Python library
[cpp10], which parses the C and CPP definitions in the header and gives us a list

70 6. Implementation

of types for peripheral register structure and macro names. To resolve the CPP
macros into numeric values, we generate a C++ source file that prints the value of
every macro into a JSON file, effectively outsourcing the macro resolution to the
compiler toolchain. We then match the macro names to the peripheral and register
names of the C type definitions elements to build our memory map. The same tree
data structure and Python classes from the previous section are reused to serialize
to SVD.

The only errors we encounter in this pipeline for the data provided by STMicro
are the occasional syntax errors introduced by spurious characters in the macro
definitions, such as missing closing) brackets or duplicate 0x prefixes, which are
patchable. Since CPP macros are only lazily evaluated when they are encountered
by the CPP in software, catching all syntax issues requires systematically using all
register bits in a firmware, which is unlikely for typical projects. Our implementation
accounts for these issues by manually patching the headers which only requires a
reasonable effort, since the syntax error patterns are highly regular.

6.1.8 Converting SVD to OWL

We merge the three SVD file sources from the vendor, CMSIS header files, and
technical documentation by traversing each tree starting from the root and copying
all non-conflicting nodes to a new tree structure. A node is conflicting if the memory
address of the register in byte or bit field in bits does not contain an identical name.
Since not all memory locations exist in all three sources, we employ three arbitration
strategies to merge conflicts with two or three sources: (a) majority voting only if 2/3
of sources agree on the memory location name, (b) explicit manual patching, and as a
fallback (c) statistical trustworthiness of each sources. From our evaluation of these
data conflicts in Section 7.4.6, we derive the trustworthiness as CMSIS header files
> technical documentation > CMSIS-SVD files. The resulting tree data structure
is trivially convertible into OWL using the ontology described in Section 6.2.

6.1.9 Converting Tooling Data to OWL

To access the internal database of the STM32CubeMX tool, we parse the XML
files with the lxml Python library [xml05] that provides an XML path language
(XPath) query interface. Even though no schema is provided, the data structure is
easy to reverse-engineer and does not differ between devices, which makes the use
of XPath selectors very easy. We can convert most data directly into OWL without
any significant normalization steps or patches, making this dataset the easiest to
work with by far, even though the amount of accessed data is still quite large.

6.1.10 Evolving OWL

We create a single knowledge graph by comparing of each dataset, as described in
the next chapter, and then choosing to use either only the best source, perhaps
with manual patches applied, or to merge a specific subset by majority voting if

6.2. Accessing OWL 71

possible. In practice, we prefer to use machine-readable sources over the technical
documentation, since accessing them is significantly easier to maintain while also
providing a much higher device resolution. Therefore, we use the technical docu-
mentation only to generate patches using our evaluation code, specifically to correct
the package pinouts and the pin functions of the CubeMX dataset, while the MMIO
register description have already been merged in the previous step. The resulting
single knowledge graph now contains the device identifiers, interrupt vector table,
packages, pins, signals, and register map for thousands of STM32 devices, which we
can access using the methods described in the next section.

6.2 Accessing OWL

The large knowledge graph generated at the end of our pipeline design contains
all data in one namespace per device to prevent ambiguous encoding as discussed
in Section 5.2.3. Figure 6.7 visualizes our own custom ontology that encodes the
extracted data. Since we do not use any advanced OWL features such as meta-
modeling, our ontology is much simpler compared to larger ones (cf. Section 2.4).
We intend for this ontology to be modified and extended as necessary for future work
and therefore should be treated as a starting point, rather than a definitive schema.

To provide a better user experience, we implement a thin Python wrapper that
receives a device identifier string and then filters the knowledge graph so that only
data for this device is contained, yielding a much smaller and simpler graph. The
user can then query the graph directly via the SPARQL query language or use one
of the wrapper methods that return a Python data structure. In particular, we
provide functions for the device identifiers, interrupt vector table, package-pin, and
pin-signal mappings, while the MMIO register map is accessible via our Python tree
structure described in Section 6.1.6 that can be serialized into a CMSIS-SVD file
for use with existing tools. This step concludes the pipeline implementation of this
thesis.

In the implementation, we continued the philosophy of the design by breaking down
each pipeline into many small tasks to keep the complexity low and to allow for simple
addition of new data sources in future. We can easily adapt and amend our modular
implementation should existing data sources change or a different representation
of the extracted data be required. We selected libraries specifically so that we
could implement the entire pipeline in Python only, which allows us to share and
reuse a lot of classes and algorithms natively across multiple pipelines. Apart from
the PDF to HTML conversion, which has a high algorithmic complexity, the main
difficulty in the remaining pipelines is in the normalization of entity naming and
the unambiguous encoding of the results. However, due to our use of multiple data
sources we were able to detect and compensate a lot of issues simply by comparison,
which is a significant improvement over a manual process. In the next chapter, we
evaluate the performance of our pipeline and discuss the quality of the data sources
and the resulting knowledge graph in detail.

72 6. Implementation

Device

DeviceSchema DevicePlatform DeviceFamily

DeviceName

DevicePinsDeviceSizeDevicePackage

DeviceTemperature

DeviceVariant

hasSchema hasPlatform hasFamily

hasName

hasPinshasSizehasPackage

hasTemperature

hasVariant

(a) The device identifier is modeled as one node with the full device name and the individual keys as
per naming schema that we derived in Figure 6.2.

Device InterruptVectorTable

InterruptPosition(int)

hasInterruptVectorTable

hasInterrupt

hasPosition

(b) The interrupt vector table is a simple one-to-one mapping of interrupt to position.

Device Package

PinSignal

hasPackage

hasPin@Position(int)

hasAdditionalFunction

hasAlternateFunction@Index(int)

(c) The package, pinout, and pin functions are encoded using relations with integer attributes to
unambiguously map the pin to the package position and an alternate pin function to its index. Some
packages duplicate pins at multiple positions, usually for the power supply. Similarly, an alternate
function can be connected to a pin at more than one index.

Device

Peripheral Description Address(int)

Register Description Offset(int)

BitField Description Offset(int) Width(int)

hasPeripheral

hasDescription

hasAddress

hasRegister

hasDescription

hasOffset

hasBitField

hasDescription

hasOffset
hasWidth

(d) The register descriptions are strictly hierarchical and are inspired by the SVD standard, so that
the conversion between the formats is simple to implement.

Figure 6.7 Our simple ontology uses the Device (in gray) as the primary node from which all
other nodes can be reached. All entities for one device are placed into their own namespace.

7
Evaluation

In this chapter, we evaluate the implementation effort of our pipeline and establish
the quality of the extracted datasets by comparing them against each other. To this
end, in Section 7.1, we describe how the pipelines are executed and which input data
is converted into intermediary artifacts and knowledge graphs, before estimating the
pipeline performance in Section 7.2 and the implementation effort of each conversion
step in Section 7.3. Subsequently, in Section 7.4, we compare the data we extracted
from the technical documentation with their machine-readable counterpart to derive
the quality of our implementation and the accuracy of the documentation. We
conclude this chapter with a discussion of our findings in Section 7.5.

7.1 Evaluation Setup

In this section, we introduce the amount and sizes of the input sources in Sec-
tion 7.1.1 and the generated artifacts in Section 7.1.2. The pipeline and all support
and evaluation code is written in Python and therefore require no special hardware
or software setup. We execute all code and measurements on a 2015 MacBook Pro
with a quad-core Intel Core i7 processor running at 2.2 GHz and 16 GB of RAM.

7.1.1 Input Sources

The input sources can be downloaded from the internet as described in Section 6.1.1.
For each input source, we list the number of files and their total size on disk to un-
derstand the storage requirement. However, the data is compressed during network
transfer, so we also add the zip archive size to understand how much data needs to
be downloaded, while the compression ratios hint at duplication in the data sources:

(i) The technical documentation has been scraped from the STMicro homepage
by an automated task every day since 16th February 2022, resulting in a total

74 7. Evaluation

of 1056 PDFs in the archive, taking up about 5.1 GB on disk and 1.8 GB
compressed (ratio 2.8).

(ii) The STM32CubeMX database expands into 1316 individual XML files with
a size of 340 MB on disk and 64 MB compressed (ratio 5.3).

(iii) The CMSIS header files for STM32 consist of 230 individual files with a size
of 290 MB on disk and 27 MB compressed (ratio 10.7).

(iv) The CMSIS-SVD files for STM32 contain 99 files with a size of 200 MB on
disk and 10 MB compressed (ratio 20).

The compression ratios are lower for sources describing the hardware more generi-
cally (PDF and STM32CubeMX) and higher for sources that only encode a specific
type of information (header and SVD files), which is explained by the massive dupli-
cation of information in the register descriptions. While the technical documentation
is about 18 times larger than all compressed machine-readable sources combined, we
also archive all PDF documents from the STMicro homepage including previous
revisions of the same document, even if our current implementation only processes
tables in datasheets and reference manuals for STM32. However, we also do not
access all machine-readable information either, therefore these numbers should be
considered as only the maximum size of the input sources.

7.1.2 Conversion Artifacts

The individual pipelines create several intermediate formats until they are converted
into OWL format. Our implementation converts a subset of the sources available in
the archive, therefore we also provide the number and size of the files for comparison.

(i) The PDF to HTML pipeline converts the latest revision of 576 PDFs with
125463 pages in total. The archive includes 52 reference manuals (79379 pages,
63% of total), 276 datasheets (37805 pages, 30%), 154 errata sheets (4429
pages, 3%), and 94 user manuals (3850 pages, 3%). About 40% of the STMicro
datasheets in our archive are not about STM32 microcontrollers, but also
include sensors, memory, and communication devices. The HTML files result
in a combined size of 580 MB on disk and 185 MB compressed.

(ii) The HTML to OWL conversion also only converts the latest revision of the
technical documents, resulting in one knowledge graph for each 162 datasheets
and 44 reference manuals. They take up 83 MB on disk and about 13 MB
compressed.

(iii) The STM32CubeMX to OWL pipeline creates one knowledge graph for each of
the 2899 STM32 devices, resulting in 104 MB on disk and 12 MB compressed.

(iv) The CMSIS header files are converted into 183 SVD files, while the reference
manuals create 56 SVD files. Combined, they take up 390 MB on disk and
43 MB compressed.

(v) The evolved knowledge graph has a size of 613 MB on disk, which reduces to
92 MB compressed.

7.2. Pipeline Performance 75

In each pipeline step, we filter out only the required information from the input
sources, which reduces the size of the final knowledge graph considerably, with the
MMIO register descriptions taking up about 2/3 of the space. In our design, a
developer only needs to download the final knowledge graph, which considerably
reduces the download size requirements. While the converted HTML retains the
original PDF copyright prohibiting republication, the final knowledge graph is a
derivative work and can therefore be distributed freely. With these input sources
and output artifacts in mind, we describe the performance of the conversion in the
next section.

7.2 Pipeline Performance

We measure the performance by the average time it takes for each pipeline to convert
all input data into artifacts on the same computer over 10 runs. The PDF to
HTML conversion takes a little over two hours to complete (about 60 ms per page),
with the longest time spend on converting the reference manuals. The remaining
tasks run much shorter, only between 3–7 minutes each, for a total of 20 minutes.
This significantly shorter runtime shows the benefit of converting the PDF to an
intermediary HTML format first, since the algorithmic complexity and the amount
of data to process would significantly slow down all pipelines depending on the
PDF content. However, each pipeline can also operate on just a small chunk of the
input, for example, just one PDF page or a single HTML chapter, which reduces the
development cycle even further to just a few seconds.

To utilize all processing power, we perform the conversion of each input file in par-
allel, which saturates the processor fully, while using about 6 GB of RAM or about
40% of the available memory on our machine. The limited memory consumption
points to a compute-bound behavior, meaning that the pipeline can be sped up by
spreading the tasks over more and faster processors. We have tested this hypothesis
by splitting the PDF to HTML into 20 jobs running in parallel on the free tier of
GitHub Actions [git18], reducing the total conversion time to 25–30 minutes. How-
ever, the costly PDF to HTML pipeline only needs on to be run on all documents
when the implementation is tuned to improve the accuracy of the conversion. In
that case, a developer would first convert a few PDF pages to test their changes in
seconds, then advance to convert the whole document in minutes, before running the
pipeline on all documents in hours. While the long conversion runtime is not ideal,
this gradual progression at least makes the impact more manageable in practice.

The PDF to HTML pipeline also needs to convert new documents whenever they are
published by STMicro. Over a period of 142 days, we counted 212 new documents
in our archive with a total of 7942 new pages, of which only 56 were datasheets and
reference manuals with a total of 3304 pages. At about 60 ms conversion time per
page, new STMicro publications could add up to 20 minutes of total runtime each
year, of which 8.5 minutes are due to datasheets and reference manuals. Since the
subsequent pipelines run much faster and only operate on the latest revision of each
document, their runtime increase only marginally. However, if there are content
changes in these new revisions, the subsequent pipeline implementations may need
to be adapted at an unknown, but likely reasonable, cost. In addition to the runtime
performance, we discuss the cost of processor development in the next section.

76 7. Evaluation

7.3 Implementation Effort

Our problem statement defined several challenges in Section 4.2, including C5: Main-
tainability, which stated that accessing the technical documentation must be imple-
mentable with “reasonable effort” compared to machine-readable sources. We ap-
proximate this metric by two measurements: lines of code and time spent on each
implementation.

Since all code in our processor and support code is written in Python 3 with a
similar coding style, we measure the effort of implementation by proxy of the lines
of code (LoC) as measured with the pygount v1.4 library [py16] and summarized
in Table 7.1. The largest task is the PDF to HTML conversion, which additionally
applies 29 manually created patches to fix wrong PDF formatting in 2409 lines of
HTML. Although not part of the pipeline, we wrote an additional 963 LoC only for
comparing data sources against each each other.

While the technical documentation pipelines consists of only about twice the LoC
as the machine-readable pipelines, they took about 3.5 times as long to implement.
In total, we spent about four months implementing the processor, which was mostly
spent on the PDF to HTML pipeline at about 9 weeks due to its algorithmic complex-
ity and the amount of fine-tuning and patching required (cf. Section 6.1.3). Mean-
while, parsing the configuration tool database (cf. Section 6.1.9) only took about
one week to implement, so the implementation time is very unevenly distributed.

Combining both LoC and time spent implementing, we estimate that accessing the
technical documentation took us about three times more effort overall compared to
accessing machine-readable sources. However, since most of the pipelines can be
reused when adding new sources or vendors, the effort is likely less for future work.
We therefore claim that accessing technical documentation can be implemented with
reasonable effort. After reviewing the performance and implementation effort of our
design, we now assess the extracted data quality.

Task or Pipeline Lines of Code

Downloading technical documentation 105
PDF to HTML conversion + 3104
HTML to OWL conversion + 1024
Accessing technical documentation = 4530

Downloading machine-readable sources 124
STM32CubeMX to OWL conversion + 789
Accessing CMSIS-SVD files + 817
CMSIS header to SVD conversion + 481
Accessing machine-readable sources = 2211

Table 7.1 This code size comparison of each task in our pipeline shows that our implementation
requires about twice the LoC for accessing the technical documentation than the machine-
readable sources. However, the technical documentation pipelines required about 3.5 as much
time to implement.

7.4. Quality of Extracted Data 77

7.4 Quality of Extracted Data

So far, we have demonstrated that we can access tabular data from the technical
documentation with reasonable effort. However, we also need to investigate if the
extracted data has a level of quality suitable to fulfill the challenges outlined in our
problem statement (cf. Section 4.2). Since the technical documentation is written by
humans for humans, we expect the content to contain spelling mistakes, copy/paste
errors, and ambiguous naming. To understand the scope of these issues, we evaluate
the quality of the data extracted from the technical documentation in comparison
to existing machine-readable sources.

In particular, we want to compare the data derived from the technical documen-
tation with data from machine-readable sources. We have to resort to a relative
comparison, since we do not have access to ground truth data, such as a detailed
system engineering or manufacturing data, and we cannot reverse-engineer such data
from the hardware for thousands of devices. Furthermore, as we will describe in de-
tail in this section, different data sources can use different names to refer to the
same entities and relations, and aggregate data into unequally large groups of de-
vices, so that a naive one-to-one comparison is not always possible. As all our input
sources are published by the vendor themselves, we also cannot claim some data to
be more authoritative than others to arbitrate grouping and naming conflicts to find
a canonical data representation.

As a consequence, we can only evaluate the completeness of data if we can find
an individual device mapping from one source to another. Otherwise we can only
check for conflicts in the union of both sources, thereby loosing the ability to distin-
guish between correctly and incorrectly added or removed data points. For example,
while we can assign each device identifier a unique package and pinout for both the
datasheets and the STM32CubeMX database, the number of MMIO register de-
scriptions we can extract from the reference manuals and CMSIS header files differs
by a factor of over three (56 vs. 183).

We additionally need to normalize the names of entities into a common represen-
tation to make a comparison technically possible. In particular, we cannot use a
statistical metric such as editing distance between two strings, as especially the
technical documentation uses naming schemas with differing prefix or abbreviation
patterns depending on the document and data encoded. We already discovered this
issue when trying to match register names with their textual descriptions in Sec-
tion 6.1.6. We therefore first run a set of manually assembled regex substitutions on
all sources to rename diverging data points and then require an exact string match
to establish equality. To keep the comparison fair, the substitutions do not take the
context of the data point into consideration, thus only transform the data repre-
sentation and not its content. For example, the names ADC_CH1 and ADC_Channel1

refer to the same entity and we can convert one to the other naming scheme without
loosing or distorting information.

Finally, we only compare datasets that are encoded in the same way in the PDF doc-
uments and were extracted by the code paths. This restriction prevents introducing
any systemic issues in our comparisons that could result from using more beneficial
formatting to encode data, for example, using a less ambiguous header structure in

78 7. Evaluation

tables. In practice, we only compare device data that uses only the same hardware
implementation and is therefore directly comparable.

We start our evaluation with the PDF to HTML conversion in Section 7.4.1, which
lays the foundation for the following dataset comparisons: device identifiers in Sec-
tion 7.4.2, interrupt vector tables in Section 7.4.3, packages and pinouts in Sec-
tion 7.4.4, pins and signals in Section 7.4.5, and register descriptions in Section 7.4.6.

7.4.1 PDF to HTML Conversion

We fine-tuned the accuracy of this pipeline through iterative manual comparison
between the PDF and resulting HTML to discover formatting issues and then adapt
the code to address them. To avoid regressions, we assembled a minimal set of PDF
pages with challenging formatting, whose generated HTML is then checked against
a known-good version. In addition, the pipeline output is completely reproducible,
so we can inspect what effects our code changes introduce by comparing the result
against the archived HTML. We stopped tuning our implementation when the for-
matting of the resulting HTML was good enough to not cause any further issues in
the table processing code in the following pipelines. Nevertheless, we could not fix
formatting issues present in the PDF itself with a better algorithm as that would
have required also understanding the content of the document. In these cases, we
patched the resulting HTML manually, almost exclusively adding missing table cell
borders that caused unrelated cells to be merged.

Our implementation also has several known limitations that we intentionally did
not address to limit coding effort, since the subsequent pipelines do not access this
content anyways. We discuss several use cases that may require these limitations to
be fixed in Section 8.2.

Figures, inter-document references, and links are converted into placeholders, with
figures showing only the caption and a rectangle containing the text (omitted)

to help debug issues with figure detection, while references and links are rendered
only as underlined text without functionality. The lack of figures and links makes
exploring the document content less convenient for discovering new data to extract,
however, extracting data from figures is not trivial [CD16] and outside the scope of
this thesis.

Figures inside table cells are not detected correctly and cause the cell layout to be
corrupted resulting in misshapen table structures. We found that such tables are
usually used to convey concepts rather than data, therefore our subsequent pipelines
do not access them anyways.

Mathematical formulas are often rendered using a mix of graphics and glyphs. This
pattern is not correctly detected and the pipeline may convert it into an omitted
figure, a small table, or text with mixed sub- and superscript. However, these
formatting artifacts do not corrupt their immediate surroundings and are therefore
easy to identify visually when reading a document.

Code blocks are often rendered into their own frame box, which is then detected as a
figure and omitted completely. If the code block is detected as text, the indentation
is not preserved, making the result hard to read.

7.4. Quality of Extracted Data 79

Background graphics are either detected as figures and omitted, which then also
removed the text placed on top of them, or detected as extra cell borders when a
table is rendered on top. We only encountered this problem in the fifth revision
of the STM32G441 datasheet [DS12960], which renders a rotated gray DRAFT text
in the page background using vector graphics. Since the document is clearly not
finalized, we simply ignore this issue until a non-draft revision is released.

While the major source of quality issues is the use of vector graphics in contexts we do
not access in later pipelines anyways, if we wanted to use the HTML as a replacement
format for PDF, these formatting errors are detrimental to the understanding of the
document content. However, for our purposes of extracting structured tabular data,
these limitations come with a good trade-off in implementation effort and do not
have an impact on data quality, as we describe in the next sections.

7.4.2 Device Identifiers

Before we can compare any datasets, we first need to understand which devices
it belongs to. This mapping needs to be non-overlapping so that we can have an
unambiguous relation from device identifier to dataset for comparison.

The STM32CubeMX database includes a single XML file with a list of 2974 STM32
devices, which we assume is the most accurate inventory of devices STMicro de-
signed. However, we discovered several devices for which there exists no datasheet,
reference manual, or mention on the STMicro homepage: STM32G471, STM32L485,
STM32L041C4, and STM32G071x6. The STM32G441 only has a draft datasheet
without a corresponding reference manual. We believe these devices are yet to be
announced as new products, thus we removed these devices from the list, resulting
in 2899 devices.

For each datasheet, we produce the list of identifiers via n-fold cartesian product (cf.
Section 6.1.5), which generates a total of 12934 STM32 identifiers, over 4 times the
STM32CubeMX amount. These generated identifiers map onto each datasheet and
reference manual without any overlaps or gaps.

However, the STM32CubeMX list of device identifiers is not a true subset of the
datasheet list of identifiers, with 203 missing devices. We therefore make use of the
naming schema we introduced in Figure 6.2 to investigate if there is a pattern to the
missing devices. We start with only the family and name keys and incrementally
add more keys with the results listed in Table 7.2.

We notice that the identifier set matches well until the package key is added, when
the datasheet identifier list explodes with 2536 additional devices. Our implemen-
tation does not respect that the pin key, describing the number of pins on a device,
interlocks with the package key, and therefore not all combinations can be valid.
Since the STM32CubeMX identifier list is still a true subset at this point, this over-
supply is not a relevant issue apart from the large number of non-existent devices.

However, when we add the temperature key, the missing devices begin to manifest
with the full STM32CubeMX identifier list containing 203 devices that cannot be
mapped to a datasheet. The temperature key denotes the maximum junction tem-
perature for safe device operation, which is a physical property of the manufacturing

80 7. Evaluation

Naming Schema Key Combinations CubeMX Datasheet

Family+Name 159 159
Family+Name+Pin 618 623 +5
Family+Name+Pin+Size 1170 1180 +10
Family+Name+Pin+Size+Package 1681 4217 +2536
Family+Name+Pin+Size+Package+Variant 1864 6004 +4140
Family+Name+Pin+Size+Package+Temperature 2651 -178 8936 +6463
Family+Name+Pin+Size+Package+Temperature+Variant 2899 -203 12934 +10238

Table 7.2 Comparing sets of identifiers with an increasing amount of naming schema keys
reveals an implicit interlocking of the pin and package keys that is not considered by our
pipeline and an issue with missing temperature values in the datasheets.

process [Kul17]. We confirmed manually that the relevant datasheets are simply
missing these temperature combinations and are not lost in our pipeline implemen-
tation. Since we could not find any mention of junction temperature in the text
or tables we access in other pipelines, we do not patch the datasheets and instead
proceed to only use a maximum of 2899− 203 = 2696 (93%) devices for comparing
dataset from datasheets. The reference manuals do not have this limitation as they
apply for a much broader range of devices, thus we can use all 2899 devices.

7.4.3 Interrupt Vector Table

The interrupt vector table is extracted from the reference manual (cf. Figure 4.2)
and compared with the vector tables of the CMSIS header files. We can only check
for naming conflicts at the same position, but not for completeness, since the refer-
ence manual contains the maximum population of the vector table, but the header
files remove the vectors for peripherals not available on the device. We also ignore
datasheets for multi-core devices that use a different table layout, leaving 2626 device
to compare.

Our pipeline was able to find and assign the correct table for all devices and after
normalizing vector names, we were able to match 175158 out of 177270 (98.8%)
compared vector positions. Of the mismatched positions, 1107 (0.6%) were missing
completely, which may still be correct due to the identifier grouping differences, while
1005 (0.6%) had incompatible names. The mismatched names were almost always
closely related, but differed only on the peripheral instance number, for example,
TIM7 vs. TIM2 and TIM1_CC vs. TIM_CC. When we looked up these failures in the
reference manuals, we could confirm that these discrepancies were all part of the
document and not introduced by our pipeline. While we could use this information
to patch the HTML, the effort required to correct over one thousand table entries
across all reference manuals is unreasonable, especially when we already have an
alternative data source in the CMSIS header files. We continue our evaluation with
another simple data structure that maps a position to a name.

7.4. Quality of Extracted Data 81

7.4.4 Package and Pinout

The package and pinout are extracted from a shared table in the datasheet (cf.
Figure 2.4) which contains a package name, the pin positions and its associated pin
name. We were able to create a one-to-one mapping from device identifier to package
for both the datasheet and STM32CubeMX database, therefore we also check for
data completeness in this comparison.

We compared 2696 devices with a total of 237399 pins from the STM32CubeMX
database against the data derived from the datasheets by first finding the correct
package, which was successful for 2690 devices, and then matching both the name
and the position of the pin on the package. During manual inspection, we noticed
a pattern of missing thermal and exposed pads in the datasheet, which were only
mentioned in the table footnotes or pinout figures, but not explicitly listed in the
pinout tables. Since these pads are always connected to GND, we need no extra
context to add these pads for the UFQFPN32, UFQFPN48, UFBGA169, UFBGA176, and
TFBGA240 packages.

With these fixes, we matched 237105 (99.88%) matched pin positions and names,
with 2635 devices (97.7%) matching the whole package correctly. We are left with
2690−2635 = 55 devices that share 294 issues where pins were either missing, added,
or unequal in their name and/or position. We investigated each issue manually and
classified them into 13 mistakes in the datasheet as listed in Table 7.3 and 9 issues
with the STM32CubeMX database as detailed in Table 7.4. The largest source
of errors is the confusion of packages in devices with an optional switched mode
power supply (SMPS) feature, which is identified by the variant key and only differs
slightly, followed by missing entries or typos in datasheet tables, with plain wrong
data being very rare. In no cases did we find bugs in our pipeline implementation
or evaluation code, with the packages for 2696 − 2690 = 6 devices simply missing
from the datasheet.

Both this dataset as well as the interrupt vector table are one-dimensional data struc-
tures mapping one position to a name, which makes the extraction and comparison
easy to implement. We evaluate a more complex two-dimensional data structure
next, where two indexes map to one entry.

7.4.5 Pin Functions

In this evaluation step, we compare the pin function tables in the datasheets (cf.
Figure 6.3) with the STM32CubeMX database. We must exclude the STM32F1
device family due to a different hardware implementation of pin functions, leaving
us with 2558 devices with a total of 1039429 pin functions. However, since the
pin function tables in the datasheet contain the union of functions for all devices
described, we can only check for conflicts in a signal name against the alternate and
additional function index. After the normalization step, we are find 997191 (95.94%)
matching pin-function pairs, with the remaining 1039429 − 997191 = 42238 pairs
either missing, added, or wrong in one or the other source.

Figure 7.1 plots the number of pin function conflicts per device as a histogram,
showing most devices having only a few issues, with the distribution exponentially

82 7. Evaluation

Affected Devices
-Missing, +Added,
=Renamed Positions

Cause of Issue in Datasheet Table and Figures

STM32G431CBYx -A4, +A43 Typo for position A4, figure is correct.

STM32L412TBY6P -E5 Typo for position F5, figure is correct.

STM32H745XxHx,
STM32H747XxHx,
STM32H755XxHx,
STM32H757XxHx

+VDD
VDD name is placed into the position column instead
of name column.

STM32H742XxHx -F2 Missing pin position, figure shows F2=VSS.

STM32H747ZIY6 -A13 Missing pin position, figure shows A13=NC.

STM32H750XBH6 -G2, -F1 Missing pin position, figure shows G2=NC, F1=NC.

STM32H757ZIY6 -A13 Missing pin position, figure shows A13=NC.

STM32L071VxIx,
STM32L072VxIx

-E3 Missing pin position, figure shows E3=VSS.

STM32L151QCH6,
STM32L152QCH6,
STM32L162QCH6

-K1
Missing pin position, figure shows
K1=OPAMP3 VINM.

STM32L053CxUx,
STM32L063CxUx

Pins 2. . . 7
renamed

Position cells are shifted down by 1 row.

STM32L062C8U6 -46 Missing position row, figure shows 46=PB9.

STM32L412CBxxP
22=(PB11, VDD),
45=(PB8, PB9),
46=(PB9, VDD)

Missing both package column and figures for the
SMPS package variant. Our pipeline instead uses
the closest non-variant match.

STM32L562QEI6P
B4=(PG15, VDD12),
M11=(PG11, VDD12)

Missing both package column and figures for the
SMPS package variant. Our pipeline instead uses
the closest non-variant match.

Table 7.3 These pin position and name mismatches are all attributed to mistakes in the
datasheet: missing entries, typos in cells, and formatting issues. Our pipeline could not find
two packages for devices with a switched mode power supply (SMPS) feature, and instead
used the closest non-variant match.

decreasing. However, there are several outliers between 80–120 conflicts per device,
which are exclusively STM32H7, STM32L1, and STM32L4 devices. To investigate
this distribution further, we calculate the absolute and relative conflict rate per
device family as listed in Table 7.5. The most common absolute conflicts are indeed
in these three families, however, the STM32L1 family has a relative conflict rate of
over one fifth, while all other families have between 1.2% and 8.2%, pointing to a
systemic issue in the data.

Since this amount of conflicts was too much to manually inspect, we instead in-
vestigated the most prominent patterns that emerged, in particular, the conflict of
an analog or special hardware function (“additional function”) with a digital signal
multiplexer (“alternate function”). We verified that the hardware implementation
of the GPIO module is identical across all compared devices, therefore these con-
flicts are easy to detect, since an analog signal cannot be routed through the digital
multiplexer and neither the other way around. When we applied these assumptions
to our data, we found that particularly the STM32L1 family suffers from systemic

7.4. Quality of Extracted Data 83

Affected Devices
-Missing, +Added,
=Renamed Positions

Cause of Issue in STM32CubeMX Database

STM32F038E6Y6 E2=(PB1, NPOR)
Wrong entry, datasheet table and figure both
show E2=NPOR.

STM32F048TxY6
D2=(NPOR, PB1),
F2=(PB1, NPOR)

Wrong entry, datasheet table and figure both
show D2=PB1 and F2=NPOR.

STM32L452REYxP 29 renamed pins Uses non-variant instead of SMPS package.

STM32L476QxIxP,
STM32L496QxIxS,
STM32L4P5QxIxS,
STM32L4R5QxIxP

C6=(PG14, VDD12),
L11=(PB11, VDD12)

Uses non-variant instead of SMPS package.

STM32L476QxIxP,
STM32L496QxIxS,
STM32L4P5QxIxS,
STM32L4R5QxIxP

C6=(PG14, VDD12),
L11=(PB11, VDD12)

Uses non-variant instead of SMPS package.

STM32L4R5AII6P
C6=(PG15, VDD12),

M10=(PH11, VDD12)
Uses non-variant instead of SMPS package.

STM32L552QEI6

B4=(V15SMPS, PG15),
M10=(VLXSMPS, PG13),
M11=(V15SMPS, PG11),
M9=(VDDSMPS, PG14)

Uses SMPS instead of non-variant package.

STM32L552VET6
Pins 20. . . 51,

98, 99 renamed
Uses SMPS instead of non-variant package.

STM32L552ZETx
Pins 31. . . 73,

126. . . 143 renamed
Uses SMPS instead of non-variant package.

Table 7.4 The STM32CubeMX database is often using the wrong package for devices with an
optional switched mode power supply (SMPS) feature as indicated by the variant key in the
identifier. As shown in the first two rows, only three other pins were simply wrong, with the
rest of the data matching the datasheet.

0 20 40 60 80 100

Number of Pin Function Conflicts

0

50

100

150

N
u
m

b
er

of
D

ev
ic

es

STM32H7
STM32L1
STM32L4

Figure 7.1 This histogram shows the number of pin function conflicts on the x-axis per device
on the y-axis. Most devices only have a few conflicts, with their number per device dropping
exponentially until they pick up again at around 80 conflicts. The 80–120 range contains only
STM32H7, STM32L1, and STM32L4 devices pointing to systemic issues in their pin function
data.

84 7. Evaluation

Family
Number of
Functions

Number of
Conflicts

Absolute Rate
of Conflicts

Relative Rate
of Conflicts

STM32H7 215442 10574 25.0% 4.9%
STM32L1 30128 6539 15.5% 21.7%
STM32L4 174070 4224 10.0% 2.4%
STM32G0 66525 4052 9.6% 6.1%
STM32F4 130518 3796 9.0% 2.9%
STM32F7 114590 3130 7.4% 2.7%
STM32F0 29487 2428 5.7% 8.2%
STM32G4 85415 1539 3.6% 1.8%
STM32F2 22151 1411 3.3% 6.4%
STM32L0 61202 1220 2.9% 2.0%
STM32F3 43386 1024 2.4% 2.4%
STM32L5 19778 858 2.0% 4.3%
STM32WB 8487 677 1.6% 8.0%
STM32WL 5888 384 0.9% 6.5%
STM32U5 32362 382 0.9% 1.2%

Table 7.5 The conflict rates of pin functions sorted by absolute rate. The STM32H7 devices
have the largest amount of pin functions, and therefore also the largest absolute share of
conflicts, while their relative rate of about 5% is comparable to other families. Meanwhile,
over one fifth of the pin functions of the STM32L1 family conflict, pointing to a systemic issue
in the data.

conflicts of only a few analog functions, which were mapped wrong across the whole
device range, explaining why the family is such an outlier. A selection of prominent
patterns including their explanations is presented in Table 7.6. Even more patterns
emerge from this conflict data when we continue to check basic assumptions about
them, however, the validation procedure is the same as before.

Even though we were not able to check for completeness of the pin function data due
to differing device set sizes, just analyzing conflicts between the datasets is enough to
point out areas for further manual investigation. By validating basic assumptions of
the data, such as the difference between an analog and digital signal multiplexer, we
can cluster these conflicts into a patterns that point to the faulty data very quickly.
This step concludes the comparisons with the STM32CubeMX database, in the next
section we will evaluate two new data sources.

7.4.6 Register Descriptions

To evaluate the register description, we compare three sources: the CMSIS-SVD
files, the CMSIS header files, and the reference manuals. For a fair comparison,
we must exclude the STM32L5 and STM32U5 families built around the ARMv8-M
architecture, which aliases the register map into two partitions [arm16] and that
changes both the documentation and header structure. In addition, despite our
best efforts, we could not find a CMSIS-SVD file for every device, particularly not
for devices released more recently such as the STM32WB and STM32WL families.
Therefore, we are left with 2583 (89.1%) devices for which all three sources exist.

7.4. Quality of Extracted Data 85

Occurances Functions Conflict Description and Cause of Issues

654
23

COMPx_INP

COMPx_INM
A6=14

Comparator input is analog, STM32CubeMX
database is wrong for the entire STM32L15x
family.

446 TIMx_ETR 1 6=A
Digital signal where the STM32CubeMX
database is wrong for the entire STM32L1
family.

140
140

USB_DM

USB_DP
A6=0

Analog signals, STM32CubeMX database is
wrong for the entire STM32L1 family.

514
319

SYS_WKUP

SYS_TAMP
A6=0

Special digital input signal hardwired into PA0
pin to wake up from deep sleep and tamper de-
tection. STM32CubeMX database is wrong for
the entire STM32L1 family.

497
497

RCC_OSC_IN

RCC_OSC_OUT
A6=0

Special analog signal that must be configured
by reset and clock control peripheral. This is
a datasheet issue on some STM32F2/F4 de-
vices and a STM32CubeMX database issue on
STM32L1 family.

296
105
93
69

UCPDx_FRSTX

6 6=A
4 6=A
0 6=A
1 6=A

Digital signal that is wrong in the
STM32CubeMX database for the entire
STM32G0 family.

Table 7.6 A selection of the most interesting and common patterns of pin function conflicts.
All of these should have been easy to catch even without a comparison with other sources, by
simply validating how digital vs. analog signals are multiplexed.

Since these sources have limited device resolution (cf. Section 7.1.2), we perform 183
unique three-way comparisons by checking for name conflicts, but not completeness.

Each register description is a tree structure made of peripherals 3 registers 3 bit
fields (cf. Section 2.3.1), therefore we perform the same conflict check at each level.
First, we convert each level into a flat memory map by expanding the peripheral,
register, or bit field from the tuple [address, width] into a range of bytes or bits with
the corresponding name attached. This flattening step is important to remove the
peripheral hierarchy, as all three sources have slight differences in how they group
registers into peripherals. For example, the reference manual specifies one contigu-
ous register file for the DMA peripheral, while the CMSIS header files separates each
DMA stream into its own mini-peripheral (cf. Figure 2.5). The total size of each
memory map and the amount each source contributes and overlaps is listed in Ta-
ble 7.7. On average, all three sources contribute about the same amount of memory
locations to the map for peripherals and registers, however, the CMSIS header files
contain fewer bit fields than the other two sources. This pattern also reflects in the
percentage of overlapping memory locations with two or three sources, which is the
lowest for bit fields. If we were to merge these three sources naively by selecting
only overlapping memory locations with matching names, the resulting memory map
would be quite incomplete.

86 7. Evaluation

Hierarchy
Level

Total Memory
Map Size

Reference
Manual

CMSIS
Header

CMSIS
SVD

Overlap Matching

Peripherals 55 704 B 77.8% 78.5% 86.5% 77.0% 62.7%
Registers 1 189 630 B 79.3% 73.8% 71.1% 74.9% 47.6%
Bit Fields 5 598 867 bit 74.8% 49.2% 72.6% 61.1% 30.7%

Table 7.7 The flat memory map locations are contributed similarly by all three sources, except
for the bit fields, where the CMSIS header files are missing a significant amount of data. We call
memory locations with more than one source overlapping. If the names of overlapping locations
are identical after normalization, we call them matching. The overlap of memory locations
gets progressively worse per hierarchy level, with matching locations yielding unacceptably
incomplete results.

To better understand these numbers, we plot the size of the memory map per three-
way comparison, starting with the peripherals in Figure 7.2. Here we observe that
all three sources mostly agree, with the CMSIS-SVD files sometimes providing more
peripherals than the other sources. However, as mentioned before, a fair comparison
of this data is not possible, since the definition of a peripheral is not the same across
all three sources.

0 B

100 B

200 B

300 B

400 B

500 B

M
em

or
y

M
ap

S
iz

e
in

B
y
te

F0 F1 F2 F3 F4 F7 G0 G4 H7 L0 L1 L4 L4+
Unique Three-way Comparison Sorted by Device Identifier and Grouped by Family

CMSIS-SVD

Reference Manual

CMSIS Header

Figure 7.2 For this graph, we arrange the peripheral memory map sizes for each comparison
by device family and alphabetical order. This arrangement simultaneously sorts the families
roughly by size, as STMicro uses larger numbers in their device identifiers to indicate more
capabilities. We can see the different device resolutions of each data source, for example, all
STM32L1 devices derive the same register description from only one reference manual.

Therefore, we continue with the register level in Figure 7.3, which breaks down the
peripheral grouping and allows for a more neutral comparison. The figure visualizes
how closely, even with a limited device resolution, our pipeline can reconstruct the
register map from the reference manual for the STM32F3, STM32F4, and STM32F7
devices. The reason for the large discrepancies in the STM32H7 devices is due to the
CMSIS header files defining registers related to dual-core management, which are
not classified as peripherals in the reference manual or simply omitted in the CMSIS-
SVD files. The peak in the STM32H7 devices is caused by a large array of registers
in a graphics accelerator peripheral, which is correctly interpreted by the CMSIS
header and reference manual pipelines, but not the CMSIS-SVD one. Investigating
further, we found that while the SVD standard allows for register arrays, STMicro

7.4. Quality of Extracted Data 87

does not always use it correctly, and thus, these arrays sometimes contain fewer and
only one register.

0 kB

5 kB

10 kB

15 kB

20 kB

M
em

or
y

M
a
p

S
iz

e
in

B
y
te

F0 F1 F2 F3 F4 F7 G0 G4 H7 L0 L1 L4 L4+
Unique Three-way Comparison Sorted by Device Identifier and Grouped by Family

CMSIS-SVD

Reference Manual

CMSIS Header

Figure 7.3 The largest register memory map contains over 23 kB of registers and is placed
right next to the smallest with a mere 1810 B. The two peaks in the STM32H7 headers and
the two dips in the STM32L4+ headers are caused by the inclusion and omission of the graphics
accelerator peripheral GFXMMU, whose register file includes an 8 KiB lookup table. Notice
how closely the reference manual matches the CMSIS header for the STM32F3 family, while
the SVD files are better suited for STM32G4 devices.

The bit field memory map sizes in Figure 7.4 show a lack of data from the CMSIS
header files compared to the reference manuals and SVD files. On inspection, we
noticed that the CMSIS header files do not contain bit field definitions for registers
that contain only a single integer value, since a 32-bit or 16-bit value can be natively
constructed using the C uint32_t or uint16_t respectively. A reasonably easy fix
could be to substitute the missing bit fields with their register name and width,
however, not all such bit fields span the whole register and the C language bindings
do not give a hint of their true width. Such a reconstruction would also inadvertently
leak the register naming conflicts into the bit field level. We therefore did not
attempt this reconstruction and instead continued the evaluation only with the bit
fields explicitly mentioned in the original sources.

While we cannot give a definitive measure of the completeness of the memory maps,
these figures demonstrate the effectiveness of our pipelines. The register descriptions
reconstructed from the reference manual and the CMSIS header files contain about
the same amount of distinct memory locations as the CMSIS-SVD files provided by
STMicro. In the special cases of interpreting register arrays and integer-only bit
field descriptions, our reference manual pipeline performs consistently better than
the SVD or CMSIS header files respectively. However, these findings are based only
on the quantity of distinct memory locations and we also want to classify its quality.

We continue our evaluation by finding all memory locations whose names do not
match after normalization for all three levels resulting in Table 7.8. Compared to
the whole memory map size, the amount of conflict-free locations is fairly high at
above 97% for registers and still 93% for bit fields. However, if we take into account

88 7. Evaluation

0 kbit

20 kbit

40 kbit

60 kbit

80 kbit
M

em
o
ry

M
ap

S
iz

e
in

B
it

F0 F1 F2 F3 F4 F7 G0 G4 H7 L0 L1 L4 L4+
Unique Three-way Comparison Sorted by Device Identifier and Grouped by Family

CMSIS-SVD

Reference Manual

CMSIS Header

Figure 7.4 The bit field memory maps extracted from the CMSIS header files are omitting
descriptions for registers with only a single large bit field. The effect can be multiplied by arrays
as seen with the STM32L4+ devices. In contrast, the SVD files tend to define all possible bit
fields, even if they do not exist on the specific device.

the map overlap from Table 7.7, the registers drop by just 1 percentage point, while
the bit fields loose over 4 points. Not only do the bit fields have a lower overlap,
their rate of conflict is 5 times higher than for the registers.

Hierarchy
Level

Conflict Size
Total

Map Size
Conflict-Free

Locations
Overlap

Map Size
Matching
Locations

Peripherals 2 780 B 55 704 B 95.0% 42 744 B 93.5%
Registers 32 694 B 1 189 630 B 97.3% 890 548 B 96.3%
Bit Fields 645 416 bit 5 598 867 bit 93.3% 3 419 745 bit 89.0%

Table 7.8 The number of conflicts per level and their percentage of conflict-free locations
relative to the total size of the memory map or just the locations where two or more sources
overlap. The low overlap of just 61% (cf. Table 7.7) lowers the bit field numbers even more .

Since we have three sources, we can try to improve these results by applying majority
voting, which requires three sources per location with two agreeing sources overruling
one other. These requirements are fulfilled by about 45–64% of overlapping memory
locations as shown in Table 7.9. We can also see significant differences per level in
the source combinations that agreed most during the voting process, particularly on
register and bit field level, where the combinations using the reference manuals agree
most often, demonstrating the accuracy and usefulness of our pipeline. This simple
voting mechanism is enough to significantly improve the percentage of conflict-free
overlapping memory, even bringing bit fields back up to 96%. However, the non-
overlapping memory is still 25% for registers and 39% for bit fields, therefore we
cannot extrapolate these numbers to the rest of the map.

When we plot the relative conflict rate of registers per device family in Figure 7.5,
we discover that both the conflict distribution as well as the majority voting oppor-
tunities are not equally distributed among the memory maps. The largest amount of

7.4. Quality of Extracted Data 89

Hierarchy
Level

Resolvable by
Majority Vote

Reference
Manual +
Header

CMSIS
Header +

CMSIS-SVD

Reference
Manual +

CMSIS-SVD

Matching +

Resolved
Locations

Peripherals 45.9% 75.4% 23.3% 1.3% 96.5%
Registers 44.8% 54.8% 15.4% 29.8% 98.0%
Bit Fields 63.5% 39.0% 22.8% 38.2% 96.0%

Table 7.9 Conflicts can be resolved by majority vote, only if two source agree over one other.
The reference manual and header files agree the most, however, at bit field level, this pattern
becomes less clear. With the voting mechanism, we can increase the accuracy of the memory
map, but only for overlapping locations.

conflicts is attributed to the STM32F7, STM32H7, and STM32L4+ families, which
are complex microcontrollers with large numbers of registers and bit fields, while
the simpler devices have fewer conflicts to begin with and a higher share of majority
voting. For the bit field conflict distribution shown in Figure 7.6, these patterns
are more spread out and the simpler devices have even more opportunities to use
majority voting.

0%

1%

2%

3%

4%

C
on

fl
ic

t
R

at
e

in
P

er
ce

n
t

F0 F1 F2 F3 F4 F7 G0 G4 H7 L0 L1 L4 L4+
Unique Three-way Comparison Sorted by Device Identifier and Grouped by Family

Relative Conflict Rate

Using Majority Voting

Figure 7.5 The distribution of register conflicts is not equally distributed, with simple devices
having almost no conflicts, while complex devices in the STM32H7 family have a significant
4% conflict rate. The opportunity to use majority voting also decreases with complex devices.

0%

1%

2%

C
on

fl
ic

t
R

at
e

in
P

er
ce

n
t

F0 F1 F2 F3 F4 F7 G0 G4 H7 L0 L1 L4 L4+
Unique Three-way Comparison Sorted by Device Identifier and Grouped by Family

Relative Conflict Rate

Using Majority Voting

Figure 7.6 The distribution of bit field conflicts is spread wider than for the registers, however,
it compensates with an even higher use of majority voting across all devices.

To investigate the outliers in the STM32F7, STM32H7, and STM32L4+ devices, we
aggregate the register conflicts into the top four associated peripherals as compiled

90 7. Evaluation

in Table 7.10, which confirms that the STM32H7 devices alone are responsible for
over half of the conflicts. We noticed the peripherals with the most register conflicts
overall are the digital filter for sigma delta modulators (DFSDM), USB, DMA, and
high-resolution timer (HRTIM) peripherals. Comparing the three sources manually,
we found a lot of register locations to have aliases with differing bit fields depend-
ing on the peripheral runtime configuration. While our reference manual pipeline
extracts these location aliases faithfully, the CMSIS-SVD files do not always encode
these aliases correctly, and the CMSIS headers compromise by using a single neutral
name instead of a C union. Our linear memory map model does not model multiple
names per location, instead keeping only the last name of register or bit field aliases,
which can lead to artificial conflicts. A solution could be to merge the aliases into
one neutral name before the comparison, provided we define a manual conversion
list of alias combinations to single name, which requires significant effort, or simply
use the CMSIS header name for these locations.

We also noticed slightly different names in the reference manuals than in the other
sources, however, the bit field structures and their functionality appears to be com-
patible, according to the associated textual descriptions. We image these issues to
be the results of the large complexity of the peripherals, having many registers with
similar names and interlocking functionality. Therefore, we should always check for
such patterns in the conflict set to find pathological issues that can only be properly
resolved with manual intervention.

Family
Share of
Conflicts

Top 4 Peripherals with Register Conflicts

STM32F0 0.3% 100% DBGMCU
STM32F1 0.5% 65% FSMC 13% ADC 13% USB 6% SDIO
STM32F2 1.8% 42% ETH 32% USB 14% FSMC 11% ADC
STM32F3 1.1% 41% ADC 32% HRTIM 20% EXTI 4% CEC
STM32F4 5.8% 20% USB 18% I2C 15% FSMC 10% QSPI
STM32F7 13.4% 48% DFSDM 19% USB 12% FSMC 8% DSI
STM32G0 2.0% 61% DMAMUX 12% SYSCFG 14% EXTI 6% COMP
STM32G4 4.1% 39% DMAMUX 24% HRTIM 10% ADC 7% UCPD
STM32H7 57.7% 19% DFSDM 15% DMA 10% HRTIM 8% ECC
STM32L0 0.9% 61% FLASH 26% COMP 13% SYSCFG
STM32L1 1.3% 59% RI 26% FSMC 8% RTC 7% OPAMP
STM32L4 4.1% 63% DFSDM 18% RTC 10% FSMC 4% DAC
STM32L4+ 7.0% 36% DFSDM 30% DSI 11% FSMC 8% DMA

Total 100% 23% DFSDM 11% USB 8% DMA 7% HRTIM

Table 7.10 The STM32H7 family is responsible for the majority of register conflicts. The
peripherals with the most conflicts are all very complex, which probably contributes to the
issue in general.

7.4. Quality of Extracted Data 91

We conclude our evaluation with a summary of all the compared datasets in Ta-
ble 7.11. Our implementation was able to match existing machine-readable data
sources both in quantity and quality with high accuracy. We took care to elimi-
nate systemic problems in our pipelines by validating the consistency of our results
and finding justifications for outliers manually. We will discuss these findings in the
context of the problem statement (cf. Section 4.4) in the next section.

Dataset Sources Method of Comparison Result

Device Identifier
Datasheet vs.

STM32CubeMX
Datasheet ⊇ STM32CubeMX

93.0%
(N=2899)

Interrupt Vector
Table

CMSIS header vs.
reference manual

Matching vector name at table po-
sition

98.8%
(N=177270)

Package
Datasheet vs.

STM32CubeMX
Datasheet = STM32CubeMX

99.77%
(N=2696)

Pinout
Datasheet vs.

STM32CubeMX
Matching pin name at package po-
sition

99.88%
(N=237399)

Pin Function
Datasheet vs.

STM32CubeMX
Matching function index for func-
tion name at pin

95.9%
(N=1039429)

Peripheral
CMSIS header vs.
CMSIS-SVD vs.

Reference manual

Matching peripheral name at byte
address after majority voting

96.5%
(N=42744)

Register
CMSIS header vs.
CMSIS-SVD vs.

Reference manual

Matching register name at byte ad-
dress after majority voting

98.0%
(N=890548)

Bit Field
CMSIS header vs.
CMSIS-SVD vs.

Reference manual

Matching bit field name at bit ad-
dress after majority voting

96.0%
(N=3419745)

All Datasets All Sources
Weighted average over all data
points

96.5%
(N=5812730)

Table 7.11 The summary of all data comparisons we performed for this evaluation. The overall
quality of the extracted data is very high when compared to the machine-readable sources.

92 7. Evaluation

7.5 Discussion

In Chapter 4, we described the scenario of porting hardware-dependent software
(HdS) to a new microcontroller with many steps that require access to data from
technical documentation. However, existing work does not provide a way to extract
this use case specific information from the PDF and thus we identified a research
gap for a specialized data pipeline. We identified eight challenges that a suitable
solution needs to address and formulated a concise problem statement in four parts:
accessing technical documentation, processing its content, encoding the extracted
information, and assessing its quality. In this section, we discuss how well our
design and implementation solved the aspects raised in the problem statement and
associated challenges.

Accessing Technical Documentation

We successfully accessed the technical documentation by converting each PDF into
HTML using a custom parser with a vendor-specific implementation, rather than a
generic heuristic approach to improve accuracy and reproducibility. Our implemen-
tation can operate on individual pages or chapters rather than the whole document,
allowing for a rapid iteration cycle to help reverse-engineer the formatting style and
find workarounds for tricky corner cases. By converting the chapters of large docu-
ments in parallel, we can convert 125 thousand pages in about 2 hours on consumer
hardware (cf. Section 7.2). The accuracy of the resulting HTML is high enough
to not cause any issues for the next pipelines, with patches required only to repair
already existing formatting issues in the PDF (XC5: Maintainability). However,
our implementation has several known limitations, in particular, the omission of
figures, that make the output less convenient for human consumption, but are not
relevant for our purposes (cf. Section 7.4.1). The implementation effort was about
twice that of accessing only machine-readable sources and required more algorithmic
complexity, however, we expect the modular design to make it less costly to add new
documentation styles from more vendors in future (cf. Section 7.3).

Processing Technical Documentation

We implemented both a table processing interface via the Wang abstract table model
(cf. Section 2.2) and a simple regex-based text mining interface to access the HTML
content (cf. Section 6.1.4). Both methods were simple to implement and worked
well in practice even for complex table structures and text fields (cf. Section 6.1.5),
yielding very detailed datasets (XC2: Fidelity). We were even able to derive ad-
ditional context from the table caption and surrounding text to selectively access
information for a single device identifier (cf. Figure 6.4), which increased our device
resolution for the register descriptions to 56 maps generated out of only 44 reference
manuals (XC1: Coverage). However, we found that regex-based text mining is too
limiting in practice, as footnotes and text present important information often using
different keywords and phrases, making it difficult to write matching patterns for.
We were also unable to find the correct textual register descriptions particularly for
complex peripherals due to these limitations (cf. Section 6.1.6).

7.5. Discussion 93

Encoding Extracted Information

We chose to encode the extracted data using a knowledge graph, for which we cre-
ated a custom ontology for our hardware description data (cf. Section 6.2). The
main difficulty was the normalization of the extracted data, which often had naming
differences between sources. However, we were able to solve this using only regex
substitution patterns. For sources that allowed majority voting, we were able to
merge machine-readable source with the technical documentation to detect and re-
pair a large portion of mistakes in the data (cf. Section 7.4.6) (XC4: Clarity). While
the use of namespaces encoded all data unambiguously (XC4: Clarity), it led to a
large knowledge graph that contained partial duplicates, simply because the devices
are frequently very similar in hardware. However, using simple compression, we were
able to reduce the final graph size to under 100 MB, which is significantly less than
the combined input sources of almost 2 GB. The final knowledge graph is easily
discoverable using third-party ontology editors such as Protégé [Mus15] (XC7: Dis-
coverability) and can be accessed via a custom Python API for integration with code
generation tools (XC8: Accessibility).

Validating Extracted Information

The results of our extensive evaluation consistently demonstrated the ability of our
pipelines to extract highly accurate and complete data from the technical documen-
tation when compared to machine readable sources (XC3: Correctness). On top,
our comparisons were able to find issues in the machine readable source, particularly
in the pinouts and pin functions that would have been very difficult to find manually.
We can now use these identified patterns to much more effectively guide a manual
patching effort to increase the quality of all sources (XC5: Maintainability). Even
for the very large and complex register descriptions, we were able to reconstruct a
good enough device resolution to match other sources and repair conflicts via major-
ity voting. These results gives us high confidence in using our pipeline for extracting
data without machine-readable counterparts and achieving similar accuracy, at least
for STMicro technical documentation. However, the architecture of our pipelines
and evaluation code is flexible enough to accommodate new data sources in future
(XC6: Extensibility).

Practical Considerations

Our pipeline does not exist in a vacuum and there are practical aspects of our use
cases that may require us to compromise our approach. In this thesis, we only
extracted data that already exists in machine-readable form for the purpose of eval-
uating this data via a direct comparison, which yielded good results only after a
normalization step. We noticed the data in the technical documentation to often
be inconsistently named across devices, not different enough to be wrong or am-
biguous especially given the context. However, a clear canonical name was some-
times difficult to identify. Unlike the machine-readable source, which are at some
point either turned into code (STM32CubeMX database) or compiled into firmware
(CMSIS-SVD and header), thus requiring a more consistent naming scheme to reduce

94 7. Evaluation

implementation efforts, the technical documentation is consumed only by human
engineers, who can compensate these differences with sufficient experience. This
different means that data extracted from technical documentation needs to be care-
fully post-processed to turn it into a high-quality dataset that is consistent across a
large number of devices. In addition, we can file bug reports for the STM32CubeMX
database in the official GitHub repository [stm08], but we did not find a way to re-
port issues in the technical documentation to STMicro. Thus, we recommend to use
machine-readable sources as much as possible, especially after patching the issues
we identified in our evaluation, and only use the technical documentation for data
that does not exist in other formats.

In the case of merging the three register descriptions sources, we have another prac-
tical issue to consider: backward compatibility. Embedded projects that use the
CMSIS header files to build their HdS cannot simply switch to new language bind-
ings without a lot of refactoring, particularly if the data is improved again and again.
A controlled upgrade solution must not remove or change existing data and instead
only add new data under new names. We would therefore recommend to use the
CMSIS header files as the primary source of register definitions and only fill up
all missing memory locations from the technical documentation, since they corre-
sponded to the header files on most collisions (cf. Table 7.9). The CMSIS-SVD files
matched the fewest times and since we could not find an explanation as to why they
are even different from the CMSIS header files, considering the C language bindings
are supposed to be generated out of these SVD files, we would simply ignore this
data source.

In conclusion, the data extracted from the STMicro technical documentation is very
accurate compared to the STM32CubeMX database, CMSIS headers, and SVD files.
Our modular design splits the problem into multiple fast pipelines that generate very
detailed datasets for thousands of devices using table processing and simple text
mining. The final dataset is encoded as a knowledge graph with a custom ontology
to facilitate discovery through standardized tooling and access through a simplified
Python API. While our design and implementation addresses all challenges listed in
Section 4.2, we have identified several limitations in our approach that need to be
resolved in future to expand on our design. We discuss this future work and provide
a conclusion to the entire thesis in the next chapter.

8
Conclusion

In this chapter, we summarize the findings of this thesis and provide a concise
conclusion based on our evaluation and discussion results in Section 8.1. Moreover,
we outline potential future work that might extend and build upon our proposed
design in Section 8.2.

8.1 Conclusion

In this thesis, we presented the design and implementation of a data processor to
extract data from technical documentation describing embedded hardware, compare
and merge it with other data, and format the result as a knowledge graph. While
machine-readable data sources for describing microcontroller hardware are available
in standardized CMSIS files and proprietary databases of configuration tools, their
scope and fidelity is decided entirely by the vendor. Most data required for porting
HdS is only available in the documentation in the form of PDFs, requiring a human
developer to manually extract the data and convert it into code, rather than using
model-driven software engineering tools. Particularly for HdS projects supporting
many embedded devices, the porting effort is significant and cannot easily be shared
with other projects implementing a different HAL or using an incompatible program-
ming language. Existing work in information extraction via table processing uses
heuristic approaches to parse PDFs often with user supervision to guide the process
and a focus on generic documents, rather than embedded technical documentation.

We therefore identified a research gap for a data processor design that specializes in
unsupervised information extraction from technical documentation for the purpose
of providing data for code generation to help with HdS porting. We designed a
conversion data processor that converts PDF to HTML as an intermediary format,
and then uses table processing and simple text mining to convert tabular data into
a embedded-specific knowledge graph ontology with a simple API. Our implementa-
tion of said data processor design for STMirco microcontrollers is modular, fast, and

96 8. Conclusion

delivers very accurate results, while requiring only three times the implementation
effort compared to only parsing machine-readable sources. The processor runtime
was about 2.5 hours on our commodity hardware, which reduces to a few minutes
after the first run due to caching all intermediary artifacts, thus allowing fast iter-
ation for development in practice. We demonstrated the extraction of a variety of
data with different complexity for several thousand STM32 microcontrollers: device
identifier, interrupts vector table, package and pinout, pin functions, and MMIO
register descriptions.

During our evaluation, we discovered the data in the technical documentation to be
very similar in quality to the machine-readable sources, with about 96.5% matching
and/or non-conflicting comparisons on average. Through a statistical analysis of
the conflicting data, we were even able to identify several patterns of issues in the
machine-readable data, which would have been very difficult to find otherwise, to
guide a manual patching effort more effectively. We also successfully merged and
corrected the register descriptions from the technical documentation, CMSIS header,
and SVD files by resolving conflicts using majority voting.

In conclusion, our data processor presents a significant improvement over existing
generic information extraction solutions when applied to technical documentation,
due to a specialized PDF parser, unsupervised and fast operation, domain-specific
data encoding, and highly accurate results. With over a thousand captioned tables in
our HTML archive of STMicro technical documentation, there is significant potential
for extracting data not available in a machine-readable format and therefore only
published in the documentation. We expect many new use cases to be made possible
by our work, some of which we describe next.

8.2 Future Work

While our implementation addresses all design challenges as discussed in Chapter 7,
we have intentionally limited ourselves to use only STMicro sources to guarantee a
fair comparison in our evaluation. As a result, the data our data processor extracted
is not enough to fully satisfy our scenario from Section 4.1. Thus, in this section,
we explore the future work needed to expand our design to its full potential.

Most data encoded in tables are easy to extract using existing methods, for example,
the DMA event trigger table in Figure 2.5 has a similar structure as the pin function
table in Figure 6.3, thus the same boxhead-stub access can be used. We can also
apply existing extraction methods to other documents, for example, extracting the
register descriptions from the datasheets describing externally connected devices
such as sensors, communication modules, and memories (cf. Section 4.1.3). Other
use cases require additional analysis on top of the extracted data. For example, we
can write an algorithm to compare all register descriptions to discover peripheral
compatibility as required during HAL porting described in Section 4.1.2.

We are confident that investing additional effort into the meta-modeling of our on-
tology to encode additional limitations with the goal of making the dataset easier to
reason about, is beneficial as well. For example, we did not extract the STM32F1
pin functions, since these functions are remapped in groups, rather than individually,

8.2. Future Work 97

which imposes an interlocking constraint on the pin function groups. Modeling this
information directly in OWL would make the knowledge graph more independent of
wrapper code so that projects using our processor are not required to use Python
for correctly accessing the stored data.

We could utilize the intermediary artifacts of our data processor (cf. Section 7.1.2)
for new use cases, for example, just as the CMSIS-SVD files inform a debugger of
the register map, we can inform an IDE of the register description by finding the
right section in the HTML documentation and presenting this information as a tool
tip. We also convert all revisions of the same PDF document to HTML and with
some minor post-processing we could visualize the differences between two revisions
to understand the changes in more depth. In a similar vain, we could develop our
evaluation setup into a “unit test” harness to continuously validate the completeness
and accuracy of the technical documentation against machine-readable sources for
new revisions. Thus, these use cases all relate to making the extracted data more
accessible to embedded developers to simplify and improve their workflow in the
specific context of their project.

Finally, adding new data sources from other vendors would constitutes another di-
rection for future work. Since we are parsing microcontroller documentation from
STMicro, accessing the frequently referenced documentation on the Arm Cortex-M
architecture (cf. Section 2.1) would also be useful. Additionally, several complex pe-
ripherals are contributed by other hardware vendors, for example, all STM32 USB
peripherals are licensed from Synopsis [RM0432], therefore comparing other ven-
dor’s documentation to perhaps resolve the register naming consistency issues we
discovered during our evaluation (cf. Section 7.4.6) may be interesting. To make
adding new formatting styles to the PDF parser easier, it may be beneficial to apply
more heuristics to tune the parser automatically [RMB+21], rather than implement
everything manually as it is done now. A more generic neural net could be trained
using the very accurate HTML output of our data processor in comparison to the
PDF.

Apart from these generic improvements, there are two specific aspects we inten-
tionally did not implement in our data processor: state-of-the-art text mining and
processing figures.

Text Mining

In this thesis, we only implemented text mining through a simple regex matcher,
which worked well for searching table captions for known patterns. However, it
broke down quickly when trying to interpret more advanced text (cf. Section 6.1.6).
Since technical documentation uses a lot of domain-specific jargon with many nouns
and abbreviations only making sense in the context of the document, the use of
traditional text mining approaches may be difficult. A custom semantic parser could
be seeded by the data extracted from table processing first to make domain-specific
text mining possible.

Apart from general access to the text, we identified the need for a “semantic hash
function” that condenses a set of descriptions into an unambiguous set of names that
faithfully represent these descriptions. The enumerated field values in the bit field

98 8. Conclusion

descriptions (cf. Figure 2.11) have a numeric value and a description, but no short
name, which is, however, required by the SVD standard to be able to assign the
numeric value to a variable in the code generator (cf. Section 2.3.1).

However, in contrast to tables, whose headers gives the content a structure, text is
much less constrained both in semantics as well as in the locality of similar data.
The implementation effort required for a custom text mining setup specialized on
the domain of embedded technical documentation could be quite significant. This
effort has to be carefully weight against the data that could potentially be made
accessible and if this comparison yields unfavorable results, the focus should be on
extracting data from simpler content types. The only other content type in tech-
nical documentation is figures, which combine text with vector graphics to present
information.

Processing Figures

Our data processor detects and then intentionally discards figures in the PDFs to
reduce the implementation effort, since we believe that the technical documentation
presents important information mostly as tables. However, with 1027 captioned ta-
bles and 998 captioned figures, the lack of figures is quite noticeable in the converted
HTML and hindered our comprehension significantly compared to the PDF. To in-
clude the figures in the HTML, we would translate the Postscript-based graphics
into SVGs, which has a compatible feature set [EHLN06] and remains much easier
to access programmatically compared to images (cf. Section 3.1). We then add a
Figure class with access methods to our Python API (cf. Section 6.1.4).

To understand what access methods are required, we look at three figures which our
scenario pointed us to. Figure 4.5 renders the pinout of the Nucleo-144 development
board as an implicit table without borders or headers, which could be reconstructed
using whitespace analysis [RCVF03, CF04, CD16]. Figure 4.4 places all connected
components into their own box, which can be interpreted as individual cells in a table
with a non-regular 2D structure. These rendering concept would not be difficult to
process, particularly if the interpretation is provided manually as part of the HTML
to OWL data processor, similarly to how the table structure is configured manually.
For complex renderings such as the clock graph in Figure 4.3, extracting text is not
enough and we would need to recognize graphics shapes into modular blocks and
then reconstruct the clock graph based on the interconnections.

Finally, there are many more opportunities for future work to build on our data pro-
cessor to extract information from technical documentation in other fields than just
for firmware development. For example, every datasheet contains a chapter on elec-
trical characteristics of the devices, which is filled with very detailed tables on power
consumption, voltage levels, and analog properties, which would be very interesting
to electrical engineers. Similarly, access to mechanical drawings and dimensions of
device footprints and packaging can be very useful for hardware engineers. Our work
has laid the foundation for developing challenging new use cases that require auto-
matically processing technical documentation and thus provides a vital contribution
to improving the porting process of embedded software.

Bibliography

[ABFV13] Andrea Acquaviva, Nicola Bombieri, Franco Fummi, and Sara Vinco.
Semi-automatic generation of device drivers for rapid embedded plat-
form development. IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, 32(9):1293–1306, 2013.

[ada15] AdaCore: CMSIS-SVD to Ada Generator. https://github.com/
AdaCore/svd2ada, 2015.

[AN21] Farzad Asgarian and Khalil Najafi. Bluesync: Time synchronization in
bluetooth low energy with energy efficient calculations. IEEE Internet
of Things Journal, 2021.

[ant17] Renode simulator. https://renode.io, 2017.

[arm15] CMSIS Project Page. https://arm-software.github.io/CMSIS_5,
2015.

[arm16] Armv8-M Architecture Reference Manual. https://

developer.arm.com/documentation/ddi0553/latest, 2016.

[AS13] Marco D Adelfio and Hanan Samet. Schema extraction for tabular data
on the web. Proceedings of the VLDB Endowment, 6(6):421–432, 2013.

[BBA17] Jacob Beningo, Jacob Beningo, and Anglin. Reusable Firmware Devel-
opment. Springer, 2017.

[Bod17] Joel Bodenmann. 2D Hardware Acceleration. PhD thesis, Haute Ecole
d’Ingénierie, 2017.

[boot17] mcuboot: Secure boot for 32-bit Microcontrollers. https://

github.com/mcu-tools/mcuboot, 2017.

[BXHP20] Bruce Belson, Wei Xiang, Jason Holdsworth, and Bronson Philippa.
C++20 coroutines on microcontrollers – what we learned. IEEE Em-
bedded Systems Letters, 13(1):9–12, 2020.

[CD16] Christopher Clark and Santosh Divvala. Pdffigures 2.0: Mining figures
from research papers. In 2016 IEEE/ACM Joint Conference on Digital
Libraries (JCDL), pages 143–152. IEEE, 2016.

[CF04] Hui Chao and Jian Fan. Layout and content extraction for pdf doc-
uments. In International Workshop on Document Analysis Systems,
pages 213–224. Springer, 2004.

https://github.com/AdaCore/svd2ada
https://github.com/AdaCore/svd2ada
https://renode.io
https://arm-software.github.io/CMSIS_5
https://developer.arm.com/documentation/ddi0553/latest
https://developer.arm.com/documentation/ddi0553/latest
https://github.com/mcu-tools/mcuboot
https://github.com/mcu-tools/mcuboot

100 Bibliography

[CHCG15] Xu Chu, Yeye He, Kaushik Chakrabarti, and Kris Ganjam. Tegra:
Table extraction by global record alignment. In Proceedings of the 2015
ACM SIGMOD international conference on management of data, pages
1713–1728, 2015.

[cpp10] CppHeaderParser: Parse C++ header files in Python. https://

pypi.org/project/CppHeaderParser, 2010.

[cpp17] A C++, compile-time, reactive RTOS for the Stack Resource Pol-
icy based Real-Time For the Masses kernel. https://github.com/
korken89/crect, 2017.

[CTT00] Hsin-Hsi Chen, Shih-Chung Tsai, and Jin-He Tsai. Mining tables from
large scale html texts. In COLING 2000 Volume 1: The 18th Interna-
tional Conference on Computational Linguistics, 2000.

[DS11581] Datasheet: STM32F413. https://www.st.com/resource/en/
datasheet/stm32f413zh.pdf.

[DS12232] Datasheet: STM32G071. https://www.st.com/resource/en/
datasheet/stm32g071rb.pdf.

[DS12556] Datasheet: STM32F750. https://www.st.com/resource/en/
datasheet/stm32h750ib.pdf.

[DS12960] Datasheet: STM32G441. https://www.st.com/resource/en/
datasheet/stm32g441vb.pdf.

[DS13139] Datasheet: STM32F7B3. https://www.st.com/resource/en/
datasheet/stm32h7b3ai.pdf.

[DS13195] Datasheet: STM32F7A3. https://www.st.com/resource/en/
datasheet/stm32h7a3qi.pdf.

[DS13196] Datasheet: STM32F7B0. https://www.st.com/resource/en/
datasheet/stm32h7b0ib.pdf.

[DS9118] Datasheet: STM32F303. https://www.st.com/resource/en/
datasheet/stm32f303vc.pdf.

[EAS13] Ivan Ermilov, Sören Auer, and Claus Stadler. User-driven semantic
mapping of tabular data. In Proceedings of the 9th International Con-
ference on Semantic Systems, pages 105–112, 2013.

[EHA+13] Johan Eriksson, Fredrik Häggström, Simon Aittamaa, Andrey
Kruglyak, and Per Lindgren. Real-time for the masses, step 1: Program-
ming api and static priority srp kernel primitives. In 2013 8th IEEE In-
ternational Symposium on Industrial Embedded Systems (SIES), pages
110–113. IEEE, 2013.

[EHLN06] David W Embley, Matthew Hurst, Daniel Lopresti, and George Nagy.
Table-processing paradigms: a research survey. International Journal
of Document Analysis and Recognition (IJDAR), 8(2):66–86, 2006.

https://pypi.org/project/CppHeaderParser
https://pypi.org/project/CppHeaderParser
https://github.com/korken89/crect
https://github.com/korken89/crect
https://www.st.com/resource/en/datasheet/stm32f413zh.pdf
https://www.st.com/resource/en/datasheet/stm32f413zh.pdf
https://www.st.com/resource/en/datasheet/stm32g071rb.pdf
https://www.st.com/resource/en/datasheet/stm32g071rb.pdf
https://www.st.com/resource/en/datasheet/stm32h750ib.pdf
https://www.st.com/resource/en/datasheet/stm32h750ib.pdf
https://www.st.com/resource/en/datasheet/stm32g441vb.pdf
https://www.st.com/resource/en/datasheet/stm32g441vb.pdf
https://www.st.com/resource/en/datasheet/stm32h7b3ai.pdf
https://www.st.com/resource/en/datasheet/stm32h7b3ai.pdf
https://www.st.com/resource/en/datasheet/stm32h7a3qi.pdf
https://www.st.com/resource/en/datasheet/stm32h7a3qi.pdf
https://www.st.com/resource/en/datasheet/stm32h7b0ib.pdf
https://www.st.com/resource/en/datasheet/stm32h7b0ib.pdf
https://www.st.com/resource/en/datasheet/stm32f303vc.pdf
https://www.st.com/resource/en/datasheet/stm32f303vc.pdf

Bibliography 101

[EMD09] Wolfgang Ecker, Wolfgang Müller, and Rainer Dömer. Hardware-
dependent software. In Hardware-dependent Software, pages 1–13.
Springer, 2009.

[ES0478] Errata Sheet: STM32H7A3/7B3 and STM32H7B0.
https://www.st.com/resource/en/errata_sheet/es0478-
stm32h7a3xig-stm32h7b0xb-and-stm32h7b3xi-device-errata-

stmicroelectronics.pdf.

[ETL05] David W Embley, Cui Tao, and Stephen W Liddle. Automating the
extraction of data from html tables with unknown structure. Data &
Knowledge Engineering, 54(1):3–28, 2005.

[Fel20] Nicholas Felker. Design of cyanobyte: An intermediate representation
to standardize digital peripheral datasheets for automatic code genera-
tion. In 2020 IEEE Sensors Applications Symposium (SAS), pages 1–6.
IEEE, 2020.

[GFK+20] Gabriel Gaspar, Peter Fabo, Michal Kuba, Juraj Dudak, and Eduard
Nemlaha. Micropython as a development platform for iot applications.
In Computer Science On-line Conference, pages 388–394. Springer,
2020.

[git18] GitHub Actions: Continuous Integration/Delivery Service. https://

github.com/features/actions, 2018.

[HBC+21] Aidan Hogan, Eva Blomqvist, Michael Cochez, Claudia d’Amato, Ger-
ard de Melo, Claudio Gutierrez, Sabrina Kirrane, José Emilio Labra
Gayo, Roberto Navigli, Sebastian Neumaier, et al. Knowledge graphs.
Synthesis Lectures on Data, Semantics, and Knowledge, 12(2):1–257,
2021.

[HBPT15] Oliver Hahm, Emmanuel Baccelli, Hauke Petersen, and Nicolas Tsiftes.
Operating systems for low-end devices in the internet of things: a sur-
vey. IEEE Internet of Things Journal, 3(5):720–734, 2015.

[HOSP21] Lars Huning, Timo Osterkamp, Marco Schaarschmidt, and Elke Pulver-
müller. Seamless integration of hardware interfaces in uml-based mdse
tools. 2021.

[HS15] Krisztián Holman and Zoltán Szabó. Microcontroller based application
prototyping using domain specific modeling. In 2015 IEEE 13th Inter-
national Symposium on Applied Machine Intelligence and Informatics
(SAMI), pages 199–202. IEEE, 2015.

[Hur00] Matthew Francis Hurst. The Interpretation of Tables in Texts. PhD
thesis, University of Edinburgh, 2000.

[i2c11] Open-source device database for I2C devices. https:

//www.i2cdevlib.com, 2011.

[Jah21] Rebecca Jahn. Reasoning in Knowledge Graphs: Methods and Tech-
niques. PhD thesis, Wien, 2021.

https://www.st.com/resource/en/errata_sheet/es0478-stm32h7a3xig-stm32h7b0xb-and-stm32h7b3xi-device-errata-stmicroelectronics.pdf
https://www.st.com/resource/en/errata_sheet/es0478-stm32h7a3xig-stm32h7b0xb-and-stm32h7b3xi-device-errata-stmicroelectronics.pdf
https://www.st.com/resource/en/errata_sheet/es0478-stm32h7a3xig-stm32h7b0xb-and-stm32h7b3xi-device-errata-stmicroelectronics.pdf
https://github.com/features/actions
https://github.com/features/actions
https://www.i2cdevlib.com
https://www.i2cdevlib.com

102 Bibliography

[KLU15] Shah Khusro, Asima Latif, and Irfan Ullah. On methods and tools of
table detection, extraction and annotation in pdf documents. Journal
of Information Science, 41(1):41–57, 2015.

[Kor18] Christopher Kormanyos. Real-Time C++: Efficient Object-Oriented
and Template Microcontroller Programming. Springer, 2018.

[Kul17] Nihal Kularatna. Electronic Circuit Design: From Concept to Imple-
mentation. CRC Press, 2017.

[Lam17] Jean-Baptiste Lamy. Owlready: Ontology-oriented programming in
python with automatic classification and high level constructs for
biomedical ontologies. Artificial intelligence in medicine, 80:11–28,
2017.

[LFL+16] Per Lindgren, Emil Fresk, Marcus Lindner, Andreas Lindner, David
Pereira, and Lúıs Miguel Pinho. Abstract timers and their implemen-
tation onto the arm cortex-m family of mcus. ACM SIGBED Review,
13(1):48–53, 2016.

[LIJ+15] Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kon-
tokostas, Pablo N Mendes, Sebastian Hellmann, Mohamed Morsey,
Patrick Van Kleef, Sören Auer, et al. Dbpedia–a large-scale, multilin-
gual knowledge base extracted from wikipedia. Semantic web, 6(2):167–
195, 2015.

[lin14] Zephyr Embedded RTOS. https://www.zephyrproject.org, 2014.

[lin16] The DeviceTree Specification. https://www.devicetree.org, 2016.

[LKM01] Kristina Lerman, Craig Knoblock, and Steven Minton. Automatic data
extraction from lists and tables in web sources. In IJCAI-2001 Work-
shop on Adaptive Text Extraction and Mining, volume 98. Citeseer,
2001.

[LLL+15] Per Lindgren, Marcus Lindner, Andreas Lindner, David Pereira, and
Lúıs Miguel Pinho. Rtfm-core: Language and implementation. In
2015 IEEE 10th Conference on Industrial Electronics and Applications
(ICIEA), pages 990–995. IEEE, 2015.

[LPL04] Shijun Li, Zhiyong Peng, and Mengchi Liu. Extraction and integration
information in html tables. In The Fourth International Conference
onComputer and Information Technology, 2004. CIT’04., pages 315–
320. IEEE, 2004.

[LWX+21] Rujiao Long, Wen Wang, Nan Xue, Feiyu Gao, Zhibo Yang, Yongpan
Wang, and Gui-Song Xia. Parsing table structures in the wild. In
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 944–952, 2021.

[MKM97] Aengus Murray, Paul Kettle, and Finbarr Moynihan. Advances in
brushless motor control. In Proceedings of the 1997 American Control
Conference, volume 6, pages 3985–3989. IEEE, 1997.

https://www.zephyrproject.org
https://www.devicetree.org

Bibliography 103

[modm09] modm: a barebone embedded library generator. https://modm.io,
2009.

[modm16] modm-devices: curated data for AVR and ARM Cortex-M devices.
https://github.com/modm-io/modm-devices, 2016.

[modm17] Aggregated CMSIS header files for STM32. https://github.com/
modm-io/cmsis-header-stm32, 2017.

[modm22] modm Data Repository. https://github.com/modm-io/modm-data,
2022.

[MPSD20] Tomasz Marciniak, Kacper Podbucki, Jakub Suder, and Adam
D ↪abrowski. Analysis of digital filtering with the use of stm32 family
microcontrollers. In Advanced, Contemporary Control, pages 287–295.
Springer, 2020.

[mpy14] MicroPython – Python for Microcontrollers. https://

micropython.org, 2014.

[Mus15] Mark A. Musen. The protégé project: a look back and a look forward.
AI Matters, 1(4):4–12, 2015.

[owl17] Owlready2: Ontology-oriented programming in Python. https://

owlready2.readthedocs.io, 2017.

[PA18] Martha O Perez-Arriaga. Automated development of semantic data
models using scientific publications. 2018.

[PCO19] André Pinho, Luis Couto, and José Oliveira. Towards rust for critical
systems. In 2019 IEEE International Symposium on Software Reliability
Engineering Workshops (ISSREW), pages 19–24. IEEE, 2019.

[pdf08] PDF 32000-1:2008 Format Specification. https://www.adobe.com/
content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf, 2008.

[pdf12] Tabula Project. https://tabula.technology, 2012.

[pdf13a] InstaBuild: Image-based Footprint and Pinout Parser. https://

www.snapeda.com/instabuild, 2013.

[pdf13b] PDFium: PDF rendering library. https://pdfium.googlesource.com/
pdfium, 2013.

[pdf17] uConfig: PDF-to-KiCAD Pinout Footprint Parser. https://

github.com/Robotips/uConfig, 2017.

[pdf20] Datasheet PDF-to-SVD Parser. https://github.com/brainstorm/
datasheet2svd, 2020.

[pdf21] pypdfium: Python bindings to PDFium. https://github.com/
pypdfium2-team/pypdfium2, 2021.

https://modm.io
https://github.com/modm-io/modm-devices
https://github.com/modm-io/cmsis-header-stm32
https://github.com/modm-io/cmsis-header-stm32
https://github.com/modm-io/modm-data
https://micropython.org
https://micropython.org
https://owlready2.readthedocs.io
https://owlready2.readthedocs.io
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://tabula.technology
https://www.snapeda.com/instabuild
https://www.snapeda.com/instabuild
https://pdfium.googlesource.com/pdfium
https://pdfium.googlesource.com/pdfium
https://github.com/Robotips/uConfig
https://github.com/Robotips/uConfig
https://github.com/brainstorm/datasheet2svd
https://github.com/brainstorm/datasheet2svd
https://github.com/pypdfium2-team/pypdfium2
https://github.com/pypdfium2-team/pypdfium2

104 Bibliography

[PL17] Sebastian Plamauer and Martin Langer. Evaluation of micropython as
application layer programming language on cubesats. In ARCS 2017;
30th International Conference on Architecture of Computing Systems,
pages 1–9. VDE, 2017.

[PLW19] Rasmus Berg Palm, Florian Laws, and Ole Winther. Attend, copy,
parse end-to-end information extraction from documents. In 2019 Inter-
national Conference on Document Analysis and Recognition (ICDAR),
pages 329–336. IEEE, 2019.

[PM0253] Programming Manual: ARM Cortex-M7 processor. https:

//www.st.com/resource/en/programming_manual/pm0253-stm32f7-
series-and-stm32h7-series-cortexm7-processor-programming-

manual-stmicroelectronics.pdf.

[py16] pygount: count lines of code using pygments. https://pypi.org/
project/pygount, 2016.

[QRAS+18] Qahhar Muhammad Qadir, Tarik A Rashid, Nawzad K Al-Salihi, Birzo
Ismael, Alexander A Kist, and Zhongwei Zhang. Low power wide area
networks: A survey of enabling technologies, applications and interop-
erability needs. IEEE Access, 6:77454–77473, 2018.

[Ras17] Roya Rastan. Automatic Tabular Data Extraction and Understanding.
PhD thesis, University of New South Wales, Sydney, Australia, 2017.

[RCVF03] J-Y Ramel, Michel Crucianu, Nicole Vincent, and Claudie Faure. Detec-
tion, extraction and representation of tables. In Seventh International
Conference on Document Analysis and Recognition, 2003. Proceedings.,
pages 374–378. IEEE, 2003.

[RM0033] Reference Manual: STM32F2x5/2x7. https://www.st.com/resource/
en/reference_manual/cd00225773-stm32f205xx-stm32f207xx-

stm32f215xx-and-stm32f217xx-advanced-armbased-32bit-mcus-

stmicroelectronics.pdf.

[RM0090] Reference Manual: STM32F4x5/4x7/4x9. https://www.st.com/
resource/en/reference_manual/dm00031020-stm32f405-415-

stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-

arm-based-32-bit-mcus-stmicroelectronics.pdf.

[RM0091] Reference Manual: STM32F0x1/0x2/0x8. https:

//www.st.com/resource/en/reference_manual/rm0091-
stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-

stmicroelectronics.pdf.

[RM0390] Reference Manual: STM32F446. https://www.st.com/resource/
en/reference_manual/rm0390-stm32f446xx-advanced-armbased-

32bit-mcus-stmicroelectronics.pdf.

[RM0431] Reference Manual: STM32L7x/73x. https://www.st.com/resource/
en/reference_manual/rm0431-stm32f72xxx-and-stm32f73xxx-

advanced-armbased-32bit-mcus-stmicroelectronics.pdf.

https://www.st.com/resource/en/programming_manual/pm0253-stm32f7-series-and-stm32h7-series-cortexm7-processor-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/pm0253-stm32f7-series-and-stm32h7-series-cortexm7-processor-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/pm0253-stm32f7-series-and-stm32h7-series-cortexm7-processor-programming-manual-stmicroelectronics.pdf
https://www.st.com/resource/en/programming_manual/pm0253-stm32f7-series-and-stm32h7-series-cortexm7-processor-programming-manual-stmicroelectronics.pdf
https://pypi.org/project/pygount
https://pypi.org/project/pygount
https://www.st.com/resource/en/reference_manual/cd00225773-stm32f205xx-stm32f207xx-stm32f215xx-and-stm32f217xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00225773-stm32f205xx-stm32f207xx-stm32f215xx-and-stm32f217xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00225773-stm32f205xx-stm32f207xx-stm32f215xx-and-stm32f217xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/cd00225773-stm32f205xx-stm32f207xx-stm32f215xx-and-stm32f217xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/dm00031020-stm32f405-415-stm32f407-417-stm32f427-437-and-stm32f429-439-advanced-arm-based-32-bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0091-stm32f0x1stm32f0x2stm32f0x8-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0390-stm32f446xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0390-stm32f446xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0390-stm32f446xx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0431-stm32f72xxx-and-stm32f73xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0431-stm32f72xxx-and-stm32f73xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0431-stm32f72xxx-and-stm32f73xxx-advanced-armbased-32bit-mcus-stmicroelectronics.pdf

Bibliography 105

[RM0432] Reference Manual: STM32L4+. https://www.st.com/resource/en/
reference_manual/rm0432-stm32l4-series-advanced-armbased-

32bit-mcus-stmicroelectronics.pdf.

[RM0455] Reference Manual: STM32H7A3/7B3 and STM32H7B0.
https://www.st.com/resource/en/reference_manual/rm0455-
stm32h7a37b3-and-stm32h7b0-value-line-advanced-armbased-

32bit-mcus-stmicroelectronics.pdf.

[RMB+21] Johannes Rausch, Octavio Martinez, Fabian Bissig, Ce Zhang, and Ste-
fan Feuerriegel. Docparser: Hierarchical document structure parsing
from renderings. In 35th AAAI Conference on Artificial Intelligence
(AAAI-21)(virtual), 2021.

[RPS16] Roya Rastan, Hye-Young Paik, and John Shepherd. A pdf wrapper
for table processing. In Proceedings of the 2016 ACM Symposium on
Document Engineering, pages 115–118, 2016.

[RPS+18] Roya Rastan, Hye-Young Paik, John Shepherd, Seung Hwan Ryu, and
Amin Beheshti. TEXUS: table extraction system for PDF documents.
In Australasian Database Conference, pages 345–349. Springer, 2018.

[rtos03] FreeRTOS: Real-time operating system for microcontrollers. https:

//freertos.org, 2003.

[rust10] Rust on Embedded Devices. https://www.rust-lang.org/what/
embedded, 2010.

[rust16] RustEmbedded: CMSIS-SVD to Rust Generator. https://

github.com/rust-embedded/svd2rust, 2016.

[rust17a] Embedded Rust. https://github.com/rust-embedded, 2017.

[rust17b] RTIC: Real-Time Interrupt-driven Concurrency. https://rtic.rs,
2017.

[rust20] embassy-rs. https://github.com/embassy-rs, 2020.

[SAM+18] Alexey Shigarov, Andrey Altaev, Andrey Mikhailov, Viacheslav Para-
monov, and Evgeniy Cherkashin. Tabbypdf: web-based system for pdf
table extraction. In International Conference on Information and Soft-
ware Technologies, pages 257–269. Springer, 2018.

[SGD08] Gunar Schirner, Andreas Gerstlauer, and Rainer Domer. Automatic
generation of hardware dependent software for mpsocs from abstract
system specifications. In 2008 Asia and South Pacific Design Automa-
tion Conference, pages 271–276. IEEE, 2008.

[Sin12] Amit Singhal. Introducing the Knowledge Graph: things,
not strings. https://blog.google/products/search/introducing-
knowledge-graph-things-not, 2012.

https://www.st.com/resource/en/reference_manual/rm0432-stm32l4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0432-stm32l4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0432-stm32l4-series-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0455-stm32h7a37b3-and-stm32h7b0-value-line-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0455-stm32h7a37b3-and-stm32h7b0-value-line-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://www.st.com/resource/en/reference_manual/rm0455-stm32h7a37b3-and-stm32h7b0-value-line-advanced-armbased-32bit-mcus-stmicroelectronics.pdf
https://freertos.org
https://freertos.org
https://www.rust-lang.org/what/embedded
https://www.rust-lang.org/what/embedded
https://github.com/rust-embedded/svd2rust
https://github.com/rust-embedded/svd2rust
https://github.com/rust-embedded
https://rtic.rs
https://github.com/embassy-rs
https://blog.google/products/search/introducing-knowledge-graph-things-not
https://blog.google/products/search/introducing-knowledge-graph-things-not

106 Bibliography

[stm07] STM32 32-bit ARM Cortex-M microcontrollers. https:

//www.st.com/en/microcontrollers-microprocessors/stm32-
32-bit-arm-cortex-mcus.html, 2007.

[stm08] STM32CubeMX Initialization Code Generator. https://www.st.com/
en/development-tools/stm32cubemx.html, 2008.

[stm17a] STM32 CMSIS-SVD Device Coverage. https://stm32-rs.github.io/
stm32-rs, 2017.

[stm17b] STM32 CMSIS-SVD Patches. https://github.com/stm32-rs/stm32-
rs/tree/master/devices, 2017.

[stm19] STM32Cube MCU Overall Offer. https://github.com/
STMicroelectronics/STM32Cube_MCU_Overall_Offer, 2019.

[stm20] STM32 Open Pin Data. https://github.com/STMicroelectronics/
STM32_open_pin_data, 2020.

[stm21] embassy-rs: stm32-data. https://github.com/embassy-rs/stm32-
data, 2021.

[svd15a] CMSIS-SVD Collection Repository. https://github.com/posborne/
cmsis-svd, 2015.

[svd15b] CMSIS System View Description Documentation. https://arm-

software.github.io/CMSIS_5/SVD/html/index.html, 2015.

[svd15c] Extensible ARM CMSIS SVD spec based, multi-language source
code generator. https://github.com/postspectacular/cmsis-svd-
srcgen, 2015.

[svd15d] SVDConv: CMSIS-compliant device header file generator. https:

//www.keil.com/pack/doc/cmsis/SVD/html/svd_SVDConv_pg.html,
2015.

[TELN03] Yuri A Tijerino, David W Embley, Deryle W Lonsdale, and George
Nagy. Ontology generation from tables. In Proceedings of the Fourth In-
ternational Conference on Web Information Systems Engineering, 2003.
WISE 2003., pages 242–249. IEEE, 2003.

[UM1724] User Manual: Nucleo-64 Development Boards. https:

//www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-
boards-mb1136-stmicroelectronics.pdf.

[UM2708] User Manual: STM32L4+ IoT Discovery Kit. https:

//www.st.com/resource/en/user_manual/um2708-discovery-
kit-for-iot-node-multichannel-communication-with-stm32l4-

series-stmicroelectronics.pdf.

[Wan96] Xinxin Wang. Tabular abstraction, editing, and formatting. 1996.

https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/microcontrollers-microprocessors/stm32-32-bit-arm-cortex-mcus.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://www.st.com/en/development-tools/stm32cubemx.html
https://stm32-rs.github.io/stm32-rs
https://stm32-rs.github.io/stm32-rs
https://github.com/stm32-rs/stm32-rs/tree/master/devices
https://github.com/stm32-rs/stm32-rs/tree/master/devices
https://github.com/STMicroelectronics/STM32Cube_MCU_Overall_Offer
https://github.com/STMicroelectronics/STM32Cube_MCU_Overall_Offer
https://github.com/STMicroelectronics/STM32_open_pin_data
https://github.com/STMicroelectronics/STM32_open_pin_data
https://github.com/embassy-rs/stm32-data
https://github.com/embassy-rs/stm32-data
https://github.com/posborne/cmsis-svd
https://github.com/posborne/cmsis-svd
https://arm-software.github.io/CMSIS_5/SVD/html/index.html
https://arm-software.github.io/CMSIS_5/SVD/html/index.html
https://github.com/postspectacular/cmsis-svd-srcgen
https://github.com/postspectacular/cmsis-svd-srcgen
https://www.keil.com/pack/doc/cmsis/SVD/html/svd_SVDConv_pg.html
https://www.keil.com/pack/doc/cmsis/SVD/html/svd_SVDConv_pg.html
https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um1724-stm32-nucleo64-boards-mb1136-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2708-discovery-kit-for-iot-node-multichannel-communication-with-stm32l4-series-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2708-discovery-kit-for-iot-node-multichannel-communication-with-stm32l4-series-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2708-discovery-kit-for-iot-node-multichannel-communication-with-stm32l4-series-stmicroelectronics.pdf
https://www.st.com/resource/en/user_manual/um2708-discovery-kit-for-iot-node-multichannel-communication-with-stm32l4-series-stmicroelectronics.pdf

Bibliography 107

[Wei16] Wang Wei. Survey of attacks and defenses on stack-based buffer overflow
vulnerability. In 7th International Conference on Education, Manage-
ment, Information and Computer Science (ICEMC 2017), pages 324–
328. Atlantis Press, 2016.

[WRSW21] Kevin Weiss, Michel Rottleuthner, Thomas C Schmidt, and Matthias
Wählisch. Philip on the hil: Automated multi-platform os testing with
external reference devices. ACM Transactions on Embedded Computing
Systems (TECS), 20(5s):1–26, 2021.

[xml05] lxml: XML and HTML with Python. https://lxml.de, 2005.

[YHZ+11] Song Yin, Li Li Huang, Hong Zhao, Yang Wang, and Ping Xia. Porta-
bility of wsn sensor driver using abstraction layer and fsm. In Applied
Mechanics and Materials, volume 44, pages 461–465. Trans Tech Publ,
2011.

[ZB21] Koen Zandberg and Emmanuel Baccelli. Femto-containers: Devops
on microcontrollers with lightweight virtualization & isolation for iot
software modules. 2021.

[ZMH+21] Gohar Zaman, Hairulnizam Mahdin, Khalid Hussain, Jemal Abawajy,
Salama A Mostafa, et al. An ontological framework for information
extraction from diverse scientific sources. IEEE access, 9:42111–42124,
2021.

[ZSJY20] Xu Zhong, Elaheh ShafieiBavani, and Antonio Jimeno Yepes. Image-
based table recognition: data, model, and evaluation. In European
Conference on Computer Vision, pages 564–580. Springer, 2020.

https://lxml.de

108 Bibliography

A
Appendix

A.1 List of Abbreviations

ADC analog-to-digital converter

API application programming interface

AST abstract syntax tree

BIOS basic I/O system

BSP board support package

CAN controller area network

CMSIS common microcontroller software interface standard

CMSIS-SVD CMSIS system view description

CPP C pre-processor

CPU central processing unit

CRC cyclic redundancy check

CSV comma-separated value

DAC digital-to-analog converter

DFSDM digital filter for sigma delta modulators

DMA direct memory access

DSP digital signal processing

EDA electronic design automation

FPU floating point unit

GPIO general purpose input/output

GUI graphical user interface

110 A. Appendix

HAL hardware abstraction layer

HdS hardware-dependent software

HiL hardware in the loop

HRTIM high-resolution timer

HTML hypertext markup language

I2C inter-integrated circuit

IDE integrated development environment

IoT internet of things

JSON JavaScript object notation

KG knowledge graph

LoC lines of code

MAC media access control

MDSE model-driven software engineering

MMIO memory-mapped input/output

NVIC nested vector interrupt controller

OCR optical character recognition

OS operating system

OWL web ontology language

PCB printed circuit board

PDF portable document format

PLL phase-locked loop

RAM random-access memory

RDF resource description framework

RDFS RDF schema

ROM read-only memory

RTFM real-time for the masses

RTL register-transfer level

RTOS real-time operating system

SMPS switched mode power supply

SPI serial peripheral interface

SPO subject-predicate-object

SRP stack resource policy

SVD system view description

SVG scalable vector graphics

SWRL semantic web rule language

A.1. List of Abbreviations 111

UART universal asynchronous receiver/transmitter

UEFI unified extensible firmware interface

USART universal synchronous/asynchronous receiver/transmitter

USB universal serial bus

XML extensible markup language

XPath XML path language

	Title Page
	Abstract
	Kurzfassung
	Acknowledgments
	Contents

	Contents
	1 Introduction
	2 Background
	2.1 Technical Documentation
	2.2 Table Processing
	2.3 Hardware-dependent Software
	2.3.1 Accessing Hardware in Software
	2.3.2 Common Microcontroller Software Interface Standard
	2.3.3 Configuration Tools
	2.3.4 New Programming Languages

	2.4 Knowledge Modeling

	3 Related Work
	3.1 Document Information Extraction
	3.1.1 Table Detection
	3.1.2 Table Understanding

	3.2 Hardware Description Data Pipelines
	3.3 Generating Hardware-dependent Software

	4 Problem Statement
	4.1 Porting Hardware-dependent Software
	4.1.1 Boot Firmware
	4.1.2 Hardware Abstraction
	4.1.3 Device Drivers
	4.1.4 Board Support Package
	4.1.5 Configuration Tools and Build Systems
	4.1.6 Testing and Simulation
	4.1.7 Specialized Hardware Abstraction Layers

	4.2 Challenges
	4.3 Existing Work
	4.3.1 Information Extraction
	4.3.2 Data Pipelines
	4.3.3 Embedded Software

	4.4 Problem Statement
	4.5 Contributions

	5 Design
	5.1 Modular Data Processor Overview
	5.2 Data Processing Pipelines
	5.2.1 Importing Vendor Data
	5.2.2 Converting PDF to HTML
	5.2.3 Converting HTML to OWL
	5.2.4 Converting HTML to SVD
	5.2.5 Converting Header Files to SVD
	5.2.6 Converting SVD to OWL
	5.2.7 Converting Tooling Data to OWL
	5.2.8 Evolving OWL

	5.3 Accessing OWL

	6 Implementation
	6.1 Data Processing Pipelines
	6.1.1 Importing Vendor Data
	6.1.2 Accessing PDF
	6.1.3 Converting PDF to HTML
	6.1.4 Accessing HTML
	6.1.5 Converting HTML to OWL
	6.1.6 Converting HTML to SVD
	6.1.7 Converting Header Files to SVD
	6.1.8 Converting SVD to OWL
	6.1.9 Converting Tooling Data to OWL
	6.1.10 Evolving OWL

	6.2 Accessing OWL

	7 Evaluation
	7.1 Evaluation Setup
	7.1.1 Input Sources
	7.1.2 Conversion Artifacts

	7.2 Pipeline Performance
	7.3 Implementation Effort
	7.4 Quality of Extracted Data
	7.4.1 PDF to HTML Conversion
	7.4.2 Device Identifiers
	7.4.3 Interrupt Vector Table
	7.4.4 Package and Pinout
	7.4.5 Pin Functions
	7.4.6 Register Descriptions

	7.5 Discussion

	8 Conclusion
	8.1 Conclusion
	8.2 Future Work

	Bibliography
	A Appendix
	A.1 List of Abbreviations

