
Lukas von Briel 
Embedded Software Intern

Utilizing Instruction Tracing to 
Analyze PX4 at Runtime
with the Perfetto Trace Processor



Who?
Hello, my name is Lukas

PX4 Autopilot

2

- My name is Lukas and I am currently studying electrical engineering at ETH in my masters.

Let me tell you a bit about my background.

- During my bachelors I was part of a a student project called swissloop


- Swissloop is a so called ‘Fokusproject’ where students develop a Hyperloop prototype over the course of a year

- In this project I was responsible for developing an inverter module, which included power electric pcb design as well as an embedded controller design

- This is the first time where I got hands on experience as an embedded engineer.


- For one year now I have worked 40% (2 days) as an embedded software intern under the guidance of Niklas to improve our debugging infrastructure


https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch
https://swissloop.ch


Why?
PX4 Autopilot runs on NuttX

• Full RTOS with peripheral drivers, extensive 
filesystem and communication protocols.


• Many external sensors and components.


• Often subtle bugs that only manifest 
heuristically under the right conditions.


• Complex code base: 2MB binary


• Very fast STM32H7 (480MHz) can easily 
overwhelm debug logging options.

Skynode3

First, let me explain why it is important that we need advanced debugging tools and cannot just print information in the console if needed or use basic gdb commands 
with a debug adapter like ST-Link:

- We are debugging the Skynode, which contains a Linux system and a flight management unit, which runs on the PX4 Autopilot software

- PX4 is based on the NuttX RTOS which is really complex and has some subtle bugs now and then


- The RTOS makes it very difficult to understand the context in which a bug is happening as many threads run simultaneously

- Another point which makes it very difficult to finding bugs is the large size of the PX4 code base. Combined with the fast processors, which can operate at up 

to 500 MHz and many different peripherals, this makes classical printf style debugging very hard and time consuming

- That is why Niklas started developing the embedded debug tools to make debugging easier and to provide more advanced techniques for PX4 developers. This 

includes many different steps from structurally displaying raw debug information to things like regression testing.

- What we did to achieve that and what advances I made to enhance the capabilities of this tool is going to be the topic of this presentation.



One does not simply trace Cortex-M

GDB

TCP

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1
  
 1

0
0
 M

H
z 

(m
a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR, 

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS, 
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as 
AF F

IF
O

LCD_R[7:0], LCD_G[7:0], 
LCD_B[7:0], LCD_HSYNC, 

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it 

A
X

I 
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm  CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin, 
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII 
MDIO 

as AF

DP, DM, STP, 
NXT,ULPI:CK
, D[7:0], DIR, 

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2
 (

2
0
0
M

H
z)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4
 (

2
0
0
M

H
z)

BDMA

DMA
Mux2

Up to 20 analog inputs 
common to ADC1 & 2

HSEM

A
H

B
4
 (

2
0
0
M

H
z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC 
Reset & 
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR  

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_ 
D[7:0],

CMD, CK as AF

Up to 17 analog inputs 
common to ADC1 and 2 

SD, SCK, FS, MCLK, 
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM, 
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB 
FLASH

512 KB AXI 
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK,  D[3:1], 
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2
  
 1

0
0
 M

H
z
 (

m
a
x)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2 
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM 
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage 
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and 
LPTIM2_OUT

AHB1       (200MHz)

DP, DM, ID, 
VBUS

64 KB SRAM 4 KB BKP 
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4
  
 1

0
0
 M

H
z 

(m
a
x)

A
P

B
4
  
 1

0
0
 M

H
z 

(m
a
x)

A
P

B
4
  
 1

0
0
 M

H
z 

(m
a
x)IWDG

Temperature 
sensor

HASH

3DES/AES

ARM Cortex-M7

GDB Server

USB

(PyOCD, JLink)

GDB/MI

IDE

SWD

Debug Probe

(STLink, J-Link)

TRACE

Trace Tooling
USB SWO

Trace Probe

What?

4

Debugging microcontrollers requires some extra steps.

- You need to connect the Serial Wire Debug (SWD) signals to a hardware debug probe

- For example a J-Link or a STLink

- The debug probe then communicates over USB to the driver software

- Typically this is OpenOCD, PyOCD or JLinkGDBServer

- Which implements the GDB server protocol

- GDB connects to the GDB Server via TCP

- You can already debug now using the GDB command line

- Most IDEs wrap the debug functionality

- Communicate with GDB using the Machine Interface


For tracing, you connect to the output-only SWO and TRACE pins. However, after that no standardized infrastructure exists.




What?
One does not simply trace Cortex-M

Trace Probe
SWO/
ITM

TRACE/
ETM

• ITM multiplexes 32 channels 
of 8/16/32-bit values, 
encoding custom messages


• DWT can sample the 
program counter and trace 
interrupts


• Hardware manages 
serialization, timestamps, 
and queues with priorities

• ETM "compresses" instruction trace by 
mainly outputting branch information                                          
(plus interrupts + cycle counts)

5

The data that can be traced, categories into three parts, ITM, ETM and Data trace. Data tracing is not supported by STM so we only have access to ITM and ETM:

- ITM data is the tracing equivalent to printf. For this to work the software needs to me instrumented (what basically means adding the print in the codebase). These 

custom messages are then output out of the tracing pins. This does add some overhead to the execution depending on how many trace packets are generated.

- Additionally, the so called DWT module can be set to add program counter, timestamps and interrupt information to the trace stream.

- A disadvantage that I observed while adding new functionality to ITM and DWT tracing is the low compression on the output stream. This means we are not able to 

collect realtime information which only allows for a general idea of what has been executed and lacks a precise insight in what the processor is actually doing.

- Luckily, there is a saviour called ETM trace.

- This has been the biggest part of my work as intern, which is to enabling the use of this tracing data source and process the data to be useful for debugging in various 

ways.

- It is important to know that ETM is a highly compressed instruction trace, which mainly makes use of outputting branch information and precise cpu cycle count 

packets for timing information.

- This enabled me to reconstruct all executed instructions with a very precise timing.

- To get a feeling of what ‘only branch instructions mean’ lets have a quick look at this figure.



Real-Time Tracing
via ETMv4 + ITM on Cortex-M7

• Instruction tracing: ~0.4 bits per cycle. 
STM32H7 running at 480MHz = ~200Mb/s.


• Trace data can be very irregular by nature, the peak data rate can easily exceed the 
port capability, resulting in an overflow


• Timing information: Cortex-M7 is a dual-issue CPU with caches, instructions take a 
variable number of cycles! ETMv4 issues differential cycle count between 
"branches", but not for single instructions.


• Data tracing: not implemented on STM32. You must manually add data sources via 
ITM: +50Mb/s.


• You must decode ETM + ITM streams on the host! 
Protocol documentation is available online for free.

orbcode.org6

Before we dive deeper into how the ETM data has been processed lets first look at some more high-level hardware facts.

- The required bandwidth is about 0.3-0.4 bits per cycle, so for a 480MHz STM32H7, we're looking at about 200Mb/s.

- Cortex-M7 is a beast: can process two instructions at the same time, has branch prediction, aggressive caching.

- Instruction timing is variable, thus ETM only gives use cycle counts between branch information, not for individual instructions.

- Data tracing is not implemented on STM32. So we must manually instrument any data we want with the ITM.

- Together we're looking at a 250Mb/s data stream, which fits comfortably into USB2

http://orbcode.org


SWD

RM0433

SWO

USB2

TR
AC

E

7

So where does the data go? This is the debug and trace subsystem of the STM32H7.

- You can see the CPU in the middle connected to the DWT, ITM, and ETM peripherals. You can connect your debugger on the left via SWD and then access the 

internals.

- You can redirect the ITM output to an internal 4kB FIFO (only true for stm32h7 we use on the Skynode V6x)and then read this out via the SWD debugger.

- You can also redirect the ITM output to the SWO pin, which is a very fast UART. The super cheap STLinkv3 can trace this up to 2.4MB/s.

- ORBTrace mini can do 6MB/s, some (expensive) J-Links/J-Traces even higher. To output the ETM, you can only output it over the 4-bit parallel trace port with up to 

~1Gb/s bandwidth (<133MB/s). For this you need a trace tool, which in our case is the open-source ORBTrace mini.



State of the Tooling:
Tracing the STM32F7 with the ORBTrace mini

STM32H7

ORBTrace mini

ORBTrace Adapter

TRACE

SWO

LEDs on data lines

removed

8

This is how the complete setup does look like.



Perfetto
Trace Analysis

Trace Viewer

• Trace Analysis: ingests traces and exposes a 
SQLite-based interface to access content in 
tabular format


• Trace Viewer: displays trace data in a time 
series format


• Input had to be reverse engineered as 
originally designed for Linux and Android

Decode Trace 
(Mortall/Orbuculum)

• Based on Orbuculum (open source)

• Adapted to generate Perfetto trace

• Added callstack generation

Trace Probe

• Enable tracing on STM32H7/F7 via GDB

• Outputs raw trace data via local port

Tracing Toolchain
Orbuculum to Perfetto

perfetto.dev

External Traces

Protocol 
Buffers

9

Ok, now what? Lets have a closer look what we can do with ITM, DWT and ETM data streams:

- To process ITM and DWT Data we used the open source library Orbuculum which already implements big parts of what we need.

- Additionally, to internal trace data only, we could also add External Traces from peripherals like SPI. A difficulty when adding external traces with a different time source 

is synchronization. I already experimented with that a bit and solved this issue for external SPI communication. However, the computation in Python was too slow and I 
dropped this part for now.


- Based on this we wrote the processing tool Orbetto which outputs a protobuf file.

- Protocol Buffers, which is similar to JSON, is a language and platform-neutral format for serializing structured data, that can be read by a tool called Perfetto.

- Perfetto is System-wide profiling for Linux and Android and is developed by google to do advanced trace analysis. Perfetto includes many different tools from which 

two where especially important to us:

- Trace Viewer: Record, view and process trace data in the Perfetto UI

- Trace Analysis Tool: it ingests traces and exposes a SQLite-based interface to access the contents of the trace in python


- To make use of this tool which is designed for Linux and Android we reverse engineered the input format to make it display PX4 trace data

To motivate why these tools are so really helpful let me quickly explain how they can be used.

- The UI is kind of obvious. By visual inspection of the Callstack and other trace data you can basically look inside the cpu and verify the execution. This has already 

been proven really helpful to analyse and fix bugs in PX4. However, there are some down sights with this approach.

- You need precise domain knowledge to know what to look for

- Even given that it is still really hard to find the cause within this large amount of trace data. “Needle in a Haystack”


- To account for that we make us of the Trace Analysis tool as well. By utilising the SQL interface we computed general high-level metrics to compare different version of 
PX4. This statistical approach would enable us to find irregularities within PX4 before even deploying the change and with very little knowledge of the actual changes.

https://perfetto.dev


Full Stack Alternatives

μTrace All-In-One Debugging Solution - Lauterbach OrbTrace Mini

10

You might think what a genius idea of putting these different open source tools together. And you are right, it actually is genius and even so genius that other companies 
had the same idea and are selling this complete pipeline in a All-In-One Product.

So why don’t we just buy such a product.

The main reason in price. Comparing for example the mu trace from Lauterbach which is an all in one tracing solution to the OrbTrace mini it becomes obvious.

While Lauterbach is really expensive, it can cost the amount of a Kleinwagen, the orb trace mini only costs only around 200 bucks.

Furthermore, not only pricing is a disadvantage, it is also way less flexibel to go with such an all in one solution. As it is not open source it is barely customizable. It would 
be for example really hard to ingrate it into our own CI for customers or contributors to use it.

To sum it up, this means the goal is to build an open source customized version for PX4, which is then optimized for our needs.



OrbTrace

Tracing Toolchain
Orbuculum to Perfetto

Port Usage
1 Thread Start
2 Thread Resume
3 Thread Runnable

DWT Interrupts
ITM Timestamps

Elements
Interrupts
Addresses

Cycle Counts
Conditionals
Exceptions

ELF File

ITM

DWT

ETM

Orbetto

Orbetto

libdwarf Capstone

~50Mb/s

~200Mb/s

Mortall

Symbols
Thread


Switches

11

I hope the rough plan is clear now and we can have a closer look on how we implemented the pipeline.

As you have seen the first step is using a Trace Tool in our case OrbTrace mini to collect some trace data.

- To enable this, the code needs to be instrumented, which means actual debugging messages have to be added to NuttX source code, to track Thread starts, resume. 

This of course generates some overhead depending on the amount of debugging messages added.

- Additional the DWT (data watchpoint and trace unit) can output interrupts and programs counter values.

- The instruction trace stream generated by the ETM (Embedded Trace Macrocell) can be enabled without any overhead.

- It allows for reconstruction of every instruction executed in the cpu. Basically you can get exact image of what is happening outside of the cpu. Like I already said in 

the last slide this can be an overwhelming amount of information but if structured well also really helpful.

Like I explained this whole process in based on the open source library Orbuculum which already implements big parts of this pipeline.

- To reduce the throughput, ETM and ITM messaged are encoded and then multiplexed by the TPIU to be output on the Trace ports.

- The demultiplexing and decoding is done by the embedded debug tools Niklas started to develop two years ago.

- To decode PC values the elf file needs to converted to a mapping between pc values and function names. Therefore, we used the library libdwarf, which has already 

been implemented Orbuculum. To make it easier we call this mapping symbols.

- For ITM data these symbols are combined directly with the trace data to generate a rough overview of programs execution on the cpu.

- To get the ARM instructions from the ETM data we use Capstone which decodes ARM instructions.

- Having these instructions and information about the context switches from ITM, Mortrall follows the execution context and constructs a Callstack.

- All tracing information is the output as a protobuf file to be used in Perfetto.

My contribution was adding functionality to ITM decoding and build all instruction trace functionality which summarised under the tool called Mortrall.




Orbetto
ITM:

ETM:

1.7 ms

Perfetto

Orbetto

Capstone

Mortall

Tracing Toolchain
Orbuculum to Perfetto

12

The tracing information, which is outputted by Orbetto into a protobuf file can than be displayed in the Perfetto UI.

- on the top you can see the thread state capture by ITM. There are three states of the thread. Either it is running, Runnable or sleeping.

- on the bottom we can see the call stack of the same thread over that same interval, which has been extract from ETM trace data.

- This plot also gives a feeling of the information density ETM vs ITM provides and why ETM can give way deeper insight into whats happening on the FMU.



Call Stack Visualisation
via Perfetto UI

13

On the top you can see the a small slice of the Perfetto ui output. This is captured right at the startup of PX4 on the FMUv6x.

You can see that each thread and also each exception has its own call stack which stays idle when other threads are running.

Lets have a closer look on what happening here

- We can see that the main thread or thread 0 initializes a new NuttX thread.

- We also see in light blue the overhead ITM messages cause.

- Here we have an ITM packet that logs thread activations 

- Then it starts the thread by first calling to SVC Exception and then continuing in a different context on thread 1

- We can see thread is called the first time an is set up by NuttX

- After the setup is finished again an SVC interrupt happens and context switches again




Call Stack Visualisation
via Perfetto UI

PE Execution Trace Element Function
bd10        pop  {r4, pc} f7 -> Atom Format 1 [b] emdbg_itm32_block

f8d5 1088   ldr.w r1, [r5, #0x88] - sched_note_resume

… - sched_note_resume

- 10 -> Cycle Count (16) sched_note_resume

- 06|97|00 -> Exception Info sched_note_resume

- 96|d4|02 -> Short Addr -

f3ef 8005   mrs r0, ipsr - arm_exception.S

… … -

2300        movs  r3, #0 - arm_exception.S

bd30        pop  {r4, r5, pc} f7 -> Atom Format 1 [b] arm_exception.S

- 96|92|4c -> Short Addr nxtask_start

b538        push  {r3, r4, r5, lr} - nxtask_start

… … nxtask_start

Context:

Thread 1

SVC Interrupt

Thread 0

14

To put you in my shoes and give you a feeling of how the ETM decoding works lets quickly step through a simplified trace and analyse how a call stack is generated:

….



Tracing Issues

PE Execution Trace Element Function
bd10        pop  {r4, pc} f7 -> Atom Format 1 [b] emdbg_itm32_block
f8d5 1088   ldr.w r1, [r5, 

#0x88]
- sched_note_resume

… - sched_note_resume
- 10 -> Cycle Count (16) sched_note_resume
- 06|97|00 -> Exception Info sched_note_resume
- 96|d4|02 -> Short Addr -

f3ef 8005   mrs r0, ipsr - arm_exception.S
… … -

2300        movs  r3, #0 - arm_exception.S
bd30        pop  {r4, r5, pc} f7 -> Atom Format 1 [b] arm_exception.S

- 96|92|4c -> Short Addr nxtask_start
b538        push  {r3, r4, r5, lr} - nxtask_start

… … nxtask_start

Contex

Thread 

SVC 

Thread 

• Function names could not be 
decoded


• Capstone wrongly classifies 
JUMP instructions


• Signal Integrity


• Multipurpose pin usage


• LED on high speed trace


• Parallel traces not equally long 

15

When understanding the concept it becomes obvious that this is a highly fragile framework as all future Trace Elements depend on the correctness of the current state.

For Example if the exception Info packet would be missing, the context switch to the exception could not be detected and the next Atom element would be related to 
completely different jump instruction as the pc offset would be wrong.



Perfetto
Trace Analysis

Trace Viewer

Decode Trace 
(Mortall/Orbuculum)Trace Probe

Tracing Toolchain
Orbuculum to Perfetto

perfetto.dev16

As we have just seen, the perfetto UI can be very helpful to put a structure into the large amount of data but it can still be quite overwhelming and time consuming to 
actually search for bugs in the UI.

Therefore instead of displaying we can also use the Trace Analysis tool of perfecto to get access to an SQLite database to compute metrics and reduce the complexity of 
our data.

https://perfetto.dev


Trace-Based Metrics
Reducing the complexity of the data

• Goal: catch regressions as early as possible, as often as possible.

perfetto.dev/docs/analysis/metrics

Queries
Sensor Reading Regularity
Comm Link Throughputs

Scheduling Latency vs. Timeouts
Thread Progress vs. Semaphores

Callstack Changes
Code Coverage

MAP

New Pull Request

Pull Request Update #1

Pull Request Update #2

Pull Request Update #3

FILTER

inputs

m
et

ric

N
ew

 P
R

PR
 #

1

PR
 #

2

PR
 #

3

REDUCE

17

What we ideally want is to have a typical filter-map-reduce pipeline that tests every PR or branch. Onto every trace we maps a set of queries. The first big question that 
comes up is what metrics would be most helpful to determine that functionality of PX4:

- regular sensor readings is very important for a stable control loop.

- We need high communication link throughputs via DMA.

- Another metric which could be very helpful especially when looking at the difference between two PRs is code coverage. When comparing code coverage the impact 

of changes can be easily measured. It can basically answer the question „did my PR only affect the system in the way I wanted it too be or might other areas be 
affected that I have not thought of.


Lastly, the reduce step renders all these metrics into a statistical representation of the current state of the PX4 to be compared between different PRs. This is called 
regression testing and would enable us to detect bugs in PX4 changes without even flying a drone.

https://perfetto.dev/docs/analysis/metrics


Querying Traces
via PerfettoSQL

perfetto.dev/docs/analysis/trace-processor

• Efficient querying via a SQLite-derived syntax via a custom processor


• Very useful for integration testing through metrics!

Protobuf Trace Processor SQL Output

18

-Protobuf as input format

- Trace Processor

To calculate metrics, perfetto has a SQL interface to query your traces.

PerfettoSQL is also speed optimized which its very important when handling such large databases.

All the information we collected about our system has been combined by orbetto within this protobuf file and is then used as an input to the Trace processor.

Now we can used the SQLite based interface to perform custom queries on our system.

The received data can then be used for integration testing though metrics.


https://perfetto.dev/docs/analysis/trace-processor


Perfetto SQL
Example

Data is distributed over many different Tables

Exported as Pandas dataframe for easy plotting

Write standard SQLite queries

Optimized access to selected group of variables

19

Here is an example of a query I wrote, which for those of you who use sql regularly probably looks familiar.

…




Trace-Based Metrics
ITM - Thread Overview

perfetto.dev/docs/analysis/metrics

• Thread Status metrics 
over all threads


• Outlier detection


• Inconsistencies can be 
detected


• By getting an overview 
optimisation can be 
made 

20

Having derived the query we could display it in the CI like this.

Here you can see an overview of the thread CPU time distributions.

I used the html tool dash to make a small webinterface where you can customize plots.

Choose work queue

In the Pie chart you can see for each function how long it ran, how long it slept and how long it waited for execution (runnable).

On the bottom you can you can see the histogram for each call of the function how long it was running.

For example when you look at board_adc you can see that most calls accumulate around 0.1 ms of runtime, however one called lasted longer.

So you could already implement some kind of outlier detection or use this information and compare it between different PRs.

https://perfetto.dev/docs/analysis/metrics


Trace-Based Metrics
ITM - Diff Heap Profile

perfetto.dev/docs/analysis/metrics

• Use case of Trace based metrics


• Heap allocation trace by ITM packets


• Based on SQL queries of Perfetto Trace 
processor


• Dash with plotly to display heap 
allocation between two PRs


• Effects of changes can be seen easily 

21

Here you can see another metric that came in handy when looking at the heap usage of the Logger two months ago. This is an example where I plotted the difference of 
heap usage between two different traces. One with the Logger enabled and with the Logger disabled.

…

In the second graph we can see a similar behavior just on the uavcan thread now. It displays the effect of uavcan shrink which is supposed to reduce the heap usage of 
uavcan. We can easily that it save us about 1kByte of heap.

So already slightly processing the trace data and putting it in a nice CI tool can make debugging and gaining insight into the system way easier.

https://perfetto.dev/docs/analysis/metrics


Trace-Based Metrics
ETM - Code Coverage

perfetto.dev/docs/analysis/metrics

• Full instruction trace available, 
which allows for a Code 
Coverage Metric


• Helpful metric in regression 
testing


• Difference in code coverage 
shows what impact changes 
have

22

For now we only looked at metrics based on ITM data but why have we put in all that work to get the ETM too work as well. By tracing all instruction we can compute 
metric called code coverage, which basically lets us derive which part of the code has been reach and how often.

I think for every PX4 developer it is quite obvious why this can be really helpful as it gives deep insights into the systems. It is also very useful for regression testing and 
you can easily check the difference between two PRs.

https://perfetto.dev/docs/analysis/metrics


Outlook

• Integrate into CI (improves usability)


• Regression testing


• Goal: AOS tracing <- Logic Analyser -> PX4 tracing


• End to end solution


• Automated insights

23

Coming to an end of my presentation I want to quickly mention what still needs to be done and actually will be done by our team.

As you have just seen many of these tools can already be used on their own to solve individual bugs on PX4 and will be added to the CI to be accessible for everyone.

However, to put this all together into a big regression debugging tool with a user friendly environment we want to do the following:

The idea would be to get a complete picture of our system on Skynode. This can be done by tracing on AOS like its already done with Perfetto, Tracing PX4 with ITM and 
ETM and tracing all external communication with some kind of logic analyzer.

This would enable us for example, to follow packets from AOS via MAVLINK to PX4 and debug thereby the whole pipeline.

To sum it up, we now have the proof of concept and a working implementation of data collection and processing part, which already helps with standard debugging, but 
the big goal would be to combine these into a automated end to end regression solution.




Conclusion
Situation:


• Embedded debug tools


• High-Level plan for advanced 
debugging


Task:


• Add functionality


• Improve visualization


• Work towards an end-to-end 
solution

Actions:

• Added ETM and conversion pipeline

• Investigated end-to-end strategies

• Step-by-step iterations increasing 

complexity

• Read all kinds of documentation


Result:

• Basic data generation and processing 

done successfully on STM32F7 and H7

• Still needs to be combined into a user-

friendly environment

24

Last but not least I want to give you some conclusion on how my internship process was.

Basically the situation, when joining Auterion was, Niklas has already set up the embedded debug tools and enabled some itm traces and processed them with Orbetto 
to display them in the Perfetto UI. He had also developed a high-level plan of what the next steps should be to reach the just mentioned goal. However, because this has 
never been done in any open source project, it was lacking detail.

My Task was to integrate ETM and ITM and find a way to derive meaningful metrics to build up a regression tool.

Because of the novelty in combining these different open source tools, my work had a big research and investigation part. It was mostly about trying out a lot of different 
stuff and doing small step by step iterations.

I encountered many obstacles, for example bugs in these untested libraries and hardware issues with Skynode. Especially, getting the ETM tracing to work was really 
hard, as good documentation is hard to find and I had to reverse engineer many parts.

For Example, I implemented during first months all the debugging functionality on a simpler dummy task, than on PX4, to get a deeper insight into the topic without 
having the full complexity at once.

Looking back I am very happy with what I achieved, as there were also times where we were stuck and weren’t sure how to proceed.

All in all, we now have basic data generation and processing infrastructures for advanced debugging of PX4 and a way better knowledge of what still needs to be done to 
integrate and make it useful on all Auterion FMUs.




Extra: Call Stack Visualisation
via Perfetto UI

~200 ns

25

Another thing I want to quickly mention, which I have not explained yet is the timing information:

- I added cycle count packets to the decoding process to get precise timing information for displaying the call stack in perfetto.

- In the plot you can see another example slice trace image from Perfetto. The red arrows mark cycle count packets.

- As you can see in the plot, we even estimate between cycle count packets by placing function switches relative to the instructions executed between the last cycle 

count and the next cycle count.

- Imagine if there would be 10 instructions than here there would be x before and y after.

- This allows to get a really precise display 


