
Niklas Hauser, CCCamp23

Debugging Microcontrollers
Debugging and Profiling ARM Cortex-M
with GDB and Python.

Thank you for the introduction.

Thanks to Milliways for the opportunity to talk here.

And thanks to the Camp for the general awesomeness.

Who?
Hello, my name is Niklas and I like microcontrollers

roboterclub.rwth-aachen.de

'10

modm.io

'13

salkinium.com/elva

'18

PX4 Autopilot

'23

'15

uVisor

The short introduction is: My name is Niklas and I like microcontrollers.

The longer introduction is:

 
- I started studying Computer Science at the RWTH Aachen University some time ago.

- By "studying" I mean, building autonomous robots at the Roboterclub Aachen e.V. starting in 2010.

- For this project, we built a C++ library which today is known as modm.io, a C++23 library generator that supports 3700+ Cortex-M devices, which I co-maintain.

- I then got bored and started at ARM working on ARMv8-M sandboxing, before I got bored of that and returned to the university to study for my masters degree.

- And by "studying" I mean, digitizing the railway signalling lab in the transportation engineering department and designing a 32nd-scale modular signalling system out

of PCBs and 3D prints.

- I finished my masters degree and now work at Auterion debugging the open-source PX4 Autopilot for commercial drones.

In summary: My name is Niklas and I like microcontrollers.

http://roboterclub.rwth-aachen.de
http://modm.io
http://salkinium.com/elva

Why?
PX4 Autopilot runs on NuttX

• Full RTOS with peripheral drivers, extensive
filesystem and communication protocols.

• Many external sensors and components.

• Often subtle bugs that only manifest
heuristically under the right conditions.

• Complex code base: 2MB binary, 6 months
to get up to speed while building tooling.

• Very fast STM32H7 (480MHz) can easily
overwhelm debug logging options.

[Auterion Skynode]

For my day job I debug the Skynode Autopilot that you can see here on the right.

- Contains a very fast STM32H7 in the top left with a lot of sensors.

- The rest of the board is for linux and wired and wireless connectivity.

- The Autopilot runs PX4, which is an open-source project.

- NuttX RTOS is complex and has subtle bugs.

- My job… is just… debug.

- Difficult because large code base and fast processor.

- I want to share how I debug and some tools I wrote to help me.

What?
Microcontrollers are Embedded Systems

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0

 M
H

z
(m

a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it
 A

X
I

B
U

S
-M

A
T

R
IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2

 (
2

0
0

M
H

z)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4

 (
2

0
0

M
H

z)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4

 (
2

0
0

M
H

z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
(m

a
x
)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0

 M
H

z
 (

m
a

x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x
)IWDG

Temperature
sensor

HASH

3DES/AES [DS12556]

• CPU connected via internal busses to memory and peripherals.

• Programmable, highly flexible real-time capabilities and data processing.

• Typically runs barebone or real-time OS.

This talk is about microcontrollers, specifically with the ARM Cortex-M architecture.

Microcontrollers contain a microprocessor, here a Cortex-M7 in light green on the left, connected via a bus system to non-volatile memories, like Flash, and volatile
memories like SRAM (yellow), as well as a number of special purpose peripherals.

These architectures can be quite complex, here you can see the CPU to several busses in gray, connected to several peripherals on different clock domains. You can also
see Direct Memory Access (DMA) peripherals, that can move data around without CPU interaction.

Peripherals can be internal, like the Random Number Generator (RNG) down here,

or external, like the Ethernet Media Access Controller up there which connects over Media Intependent-Interface (MII) to an external PHY via the microcontroller pins.

Memories typically in the kilobytes, high-end devices can have a few megabytes, so microcontrollers cannot natively run Linux.

Allows for highly configurable, very low-latency responses to internal and external events via an RTOS.

On the left, the CPU itself also has some external signals for debugging, and in this talk I'll show you how to use them.

Remote Debugging
One does not simply connect into Cortex-M

SWD

Debug Probe

(STLink)

GDB

TCP

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0

 M
H

z
(m

a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it
 A

X
I

B
U

S
-M

A
T

R
IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2

 (
2

0
0

M
H

z)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4

 (
2

0
0

M
H

z)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4

 (
2

0
0

M
H

z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
 (

m
a

x)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0

 M
H

z
(m

a
x
)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x
)

A
P

B
4

 1

0
0

 M
H

z
 (

m
a

x)IWDG

Temperature
sensor

HASH

3DES/AES

ARM Cortex-M

GDB Server

USB

(OpenOCD)

GDB/MI

IDE

If you want to debug a microcontroller here on the bottom right

- You need to connect the Serial Wire Debug (SWD) signals to a hardware debug probe

- I can recommend the STLinkv3, since it costs only 11€ and has a built-in Serial

- The debug probe then communicates over USB to the driver software

- Typically this is OpenOCD (On-Chip Debug)

- Implements the GDB server protocol

- GDB connects to the GDB Server via TCP

- You can already debug now using the GDB command line

- Most IDEs wrap the debug functionality

- Communicate with GDB using the Machine Interface

- MI is an ASCII protocol for communicating with GDB as a User Interface

- This has a lot of latency, it's definitely not real-time.

- Particularly bad if you connect GDB over Wifi to Server. This will be a problem for later.

GDB? The GNU DeBugger
arm-none-eabi-gdb with Python 3 support

• GDB is part of the official arm-none-eabi distribution based on GCC 12.

• ARM builds GDB without Python 3 support !!!

• Download the xPack arm-none-eabi-gcc12 toolchain instead.

• BUT: only symlink arm-none-eabi-gdb-py3 into your path.

• arm-none-eabi-gdb-py3 has a stand-alone Python 3.11 runtime!

• GDB usually works fine with debug symbols from any compiler.

- GDB is the debugger that comes with your arm-none-eabi toolchain

- ARM provides an official and tested version, use that one for compilation.

- But the GDB is not compiled with Python3 support.

- So you need to install the xPack version, but only symlink the GDB, not the rest

- Alternatively use the GDB from your distribution at your own risk.

How to start a GDB session
using a OpenOCD debug probe

1. Launch OpenOCD with your target configuration: 
openocd -f board/nucleo_f429zi.cfg -c "init"

2. Launch GDB with the firmware ELF file and connect to the GDB server: 
arm-none-eabi-gdb-py3 -ex "target extended-remote :3333"
firmware.elf

3. ctrl-c and continue: halt and run execution on microcontroller.

4. step, next, finish: step into/over/out of statements/instructions.

5. backtrace: show where you are.
Please consult the 

GDB tutorials online!

Let's go over the basics of how to launch a GDB debug session.

- Connect the debug probe to the microcontroller, make sure it has power

- Launch OpenOCD with the correct target configuration and issue the init command

- Launch GDB from another process with the ELF file that contains the debug symbols and connect locally

- Note that you can also pass an IP with the port if you need to debug over the local network.

- Super basic commands are: ctrl-c for interrupting execution.

- GDB has now HALTED the CPU, while you debug.

- Be careful what you debug, drones tend to fall out of the sky if the Avionics fail.

- You can single step through your code.

- And you can show where you are with the backtrace command.

There are many GDB tutorials online, please refer to them if you're a beginner.

GDB Python API
for customizing GDB

• Import GDB and Python scripts with the source script.py command.

• import gdb is implemented directly in GDB using the CPython API!

• Python API cannot write variables! gdb.execute("set var = 1")

• Python API does not expose C preprocessor defines! No workaround.

• Python API is language-independent and lacks best practice examples.

• C/C++ type system horseshoed into duck-typed Python syntax?

Please consult the GDB 

Python API Docs online!

GDB has it's own script language, but it's quite limited.

To extend GDB a Python API exists:

- You can source Python scripts inside GDB

- The gdb module only exists inside GDB you cannot call it from outside, it directly interfaces with the C API

- There are some limitations:

- You cannot write variables, you must do this via the GDB scripting language

- You cannot access all the debug information, some stuff is missing like C preprocessor macros. A big issue for knowing the NuttX configuration.

- Very well documented at API level, but how to use it to do non-trivial things is fairly unclear. I had to read source code to figure out what the limitations are.

- language independ API can be a bit wonky for C/C++ semantics

I'm not going to show you a lot of code, rather talk about concepts.

Plotting Call Graphs
to understand a codebase

Problem: Who is calling this function?

1. Set a breakpoint and log the backtrace of the breakpoint location to a file: 
break function
commands
 backtrace
 continue
end

2. Convert to dot and render via graphviz to SVG and explore via browser.  
Better: Convert to gprof format and view with KCachegrind.

3. Requires no instrumentation, but very slow ~12 breakpoints / sec.

[emdbg.analyze.calltrace]

Let's start with something simple:

- PX4 Autopilot project contains several million lines of code

- Only started working with it about 6 months ago

- So I need to get an overview: who is calling this function?

- I can set a breakpoint on a function and attach a backtrace to this breakpoint then immediately continue.

- Log the GDB output and postprocess it with a Python script

- Convert to a graph either via graphviz for custom visualizations

- Or use standardized format and view with KCachegrind

This is very slow, because of the latency.

ModuleBase<Navigator>::run_trampoline

Navigator::run

statModuleBase<px4::logger::Logger>::run_trampoline

px4::logger::Logger::run

mkdir openreaddir

stat

stat

UavcanNode::init

UavcanServers::init

open opendirread readdir stat

UavcanNode::start

open opendir readreaddir stat

UavcanServers::migrateFWFromRoot

opendir readdir stat

uavcan::dynamic_node_id_server::centralized::Server::init

openread

uavcan_posix::FirmwareVersionChecker::createFwPaths

stat

uavcan_posix::dynamic_node_id_server::FileEventTracer::init

open

opendir

opendir

readdir

readdir

stat

_file_initialize

_file_read

lseek

_file_write

fsync

lseek

lseek

open

open

lseek

read

read

fsync

fsync

arm_doirq

irq_dispatch

irq

autosave_worker fsync lseekopen readwrite

param_save_default

fsynclseek open read write

board_app_initialize

stm32_sdio_initialize

init

boardctl

init

bson_decoder_init_file

read_int32

read

bson_decoder_next

read_int8

read

bson_encoder_append_double

write_double

write

write_x

write

bson_encoder_append_int32

write

bson_encoder_fini

fsync

lseek

write

write

close

nx_close

close

cmd_mount

mount

mount

exception_common

irq

expression

unaryexpression

stat

fat_allocatedirentry

fat_allocatelfnentry

open

fat_fscacheread

open

fat_bind

fat_mount

mount

fat_checkfsinfo

mount

fat_close

fat_sync

close

fat_dircreate

open

fat_dirwrite

open

fat_putlfname

open

fat_extendchain

fat_getcluster

lseekmkdir write

fat_ffcacheflush

fat_hwwrite

closefsync lseek write

fat_ffcacheinvalidate

write

fat_ffcacheread lseekreadwrite

fat_hwread

lseek readwrite

fat_findalias

fat_findsfnentry

open

fat_finddirentry

fat_findlfnentry

mkdir openopendir stat mkdir openstat

mkdir open opendir stat mkdir openstat

fat_fscacheflush closefsyncmkdir

close fsyncmkdir open write

closefsync mkdir open write

closefsync lseekmkdir mount openopendir readdir statwrite

close fsync lseek mkdir mountopen opendir readdir stat write

lseek mkdirwrite

mmcsd_read

close fsync lseek mkdir mountopen opendir read readdir stat write

mmcsd_write

close fsync lseek mkdir openwrite

fat_mkdir

mkdir mkdir

mkdir

mkdir

mkdir

fat_updatefsinfo

mkdir mount

mount

fat_open

open

open

fat_opendir

opendir

open

fat_uniquealias

open

fat_read

read

fat_readdir

readdir

fat_seek

lseek

lseek

lseek

lseek

fat_stat

stat

close fsync closefsyncclose fsync

open

close fsyncmkdir

fat_write

write

write

write write

write

file_close

close

file_seek

lseek

file_vopen

open

fopen

open

fsync

stm32_sdmmc_interrupt

irq

nx_seek

lseek

mkdir

mkdir

mmcsd_cardidentify

mmcsd_sendcmdpoll

init

stm32_recvshort

init

mmcsd_eventwait

stm32_eventwait

close fsync mkdir openstat write

mmcsd_get_r1

close fsync init lseek mkdir write

stm32_recvshortcrc

close fsyncmkdir stat write

stm32_waitresponse

close fsync init mkdir openwrite

mmcsd_mediachange

mmcsd_probe

init

init

init

mmcsd_sdinitialize

init

mmcsd_readsingle

close fsync lseek mkdirmount open opendir read readdir stat write

fsync

close fsync lseek mount open opendir read statwrite

mmcsd_transferready

close fsync mkdir open statwrite

mmsd_recv_r1

fsync lseek mkdir mount openread stat write

stm32_dmarecvsetup

close fsync lseek mkdir mount open opendir read readdir statwrite

stm32_waitenable

close fsync lseek mountopen read stat write

write init

mmcsd_verifystate

init

mmsd_get_scr

init

stm32_recvlong

init

stm32_sendcmd

closefsync init lseek mkdir mount open opendir read stat write

mmcsd_stoptransmission

write

write

write

fsync mkdiropen stat writeclose fsynclseek mkdir open stat write

closefsync lseekmkdir openstatwrite

init

mmcsd_writemultiple

write

mmcsd_writesingle

close fsync lseek mkdir openwrite

write

write

writewrite

write

stm32_dmasendsetup

write

write

write

closefsync mkdir write

close fsync mkdir write

closefsync lseek mkdir write

fsync mkdir open write

closefsync lseek mkdir open write

close fsync lseek mkdir write

close fsync mkdir open write

init

init

stm32_recvsetup

init

fsync init lseek mkdir mountopen read stat write

nx_mount

mount

nsh_consolemain

nsh_initscript

mountstat

nsh_execute

mount

stat

nsh_initialize

init

nsh_script

mount stat

nsh_main

mountstat

init

nsh_parse

nsh_parse_command

mountstat

mountstat

mount stat

close

mount

nx_read

read

lseek

nx_stat

stat_recursive

stat

nx_vopen

open

nx_write

write

nxtask_start

nxtask_startup

fsync init lseek mkdir mountopen opendir read readdir stat

work_lpthread

fsync lseek open read write

statmkdir open readdir init mountstat

task_main

fsync lseekopen read

uavcan_main

open opendirread readdir stat

open

open_mountpoint

opendir

opendir

param_export_internal

writewrite fsynclseek write

open

fsynclseek write

param_verify

read

read read

pthread_startup

px4::logger::LogWriterFile::run_helper

close fsync write

px4::logger::LogWriter::start_log_file

px4::logger::LogWriterFile::start_log

open

px4::logger::LogWriterFile::LogFileBuffer::close_file

close

px4::logger::LogWriterFile::LogFileBuffer::fsync

fsync

px4::logger::LogWriterFile::LogFileBuffer::start_log

open

px4::logger::LogWriterFile::LogFileBuffer::write_to_file

write

px4::logger::LogWriterFile::run

close fsyncwrite

closefsync write

open

px4::logger::LoggedTopics::add_topics_from_file

open

px4::logger::LoggedTopics::initialize_logged_topics

open

px4::logger::Logger::create_log_dir

mkdir

px4::logger::Logger::get_log_file_name

mkdir

px4::logger::Logger::initialize_topics

open

mkdir

open

px4::logger::Logger::start_stop_logging

mkdir open

px4::logger::util::check_free_space

readdir

px4::logger::Logger::start_log_file

openmkdir

mkdir open

readdir

read

read_x

read read

read

readdir

sdio_initialize

stm32_reset

init

sdmmc_getreg32

sdmmc_modifyreg32

sdmmc_putreg32

stat

stat

stm32_configwaitints

closefsync irq mkdir open read stat write

stm32_configxfrints

fsync irq mkdir write

stm32_dataconfig

closefsync init lseek mkdir mount open read stat write

close fsync mkdir openwrite

stm32_datadisable

close fsync init lseek mkdir open opendirread readdir stat write

close fsync lseek mkdir mount open opendir readreaddir stat writefsync fsync lseekmkdir mount open read stat writefsync lseek mkdir open opendirread readdir stat writeclose fsync lseek mkdir open writefsyncmkdir write close fsync lseek mkdir open writeclose fsync mkdir write

stm32_endtransfer

irq

irq

irq

stm32_endwait

irq

fsync irq mkdir statwrite

close fsync mkdir open write

fsync mkdirstat write

init

initinit

initclose fsync init lseek mkdirmount open read stat write

close fsyncmkdir write

init

stm32_setclkcr

init

stm32_setpwrctrl

init

init

init

irq

irq

fsync init lseek open opendir readstat write

close fsync init lseekmkdir mount open read stat write init

init

init

fsync lseek mkdir mount open statwrite

close fsyncmkdir open read write

close fsync init mkdir open write

close fsyncmkdir open write

closefsyncmkdir openwrite

fsync lseekopen

lseekread

fsync lseekopen read

uavcan::dynamic_node_id_server::StorageMarshaller::get

uavcan_posix::dynamic_node_id_server::FileStorageBackend::get

open read

uavcan::dynamic_node_id_server::centralized::Storage::getNodeIDForUniqueID

open read

uavcan::dynamic_node_id_server::centralized::Storage::init

openread

open readopenread

open opendir read readdirstat

stat

open

open read

stat

work_process

fsynclseek open read write

fsync lseek open readwrite

write

write

write

write

Call Graph for SDMMC Peripheral

SDMMC

driver

FAT

filesystem

libc

interface

tasks

- One source of issues is logging data to the SDCard inside the Autopilot.

- I wanted to know what functions were involved in accessing the SDCard peripheral.

- This is the resulting call graph.

- Split into the SDMMC peripheral at the bottom

- FAT filesystem in the middle

- the NuttX libc interface above that

- and the tasks.

ModuleBase<Navigator>::run_trampoline

Navigator::run

statModuleBase<px4::logger::Logger>::run_trampoline

px4::logger::Logger::run

mkdir openreaddir

stat

stat

UavcanNode::init

UavcanServers::init

open opendirread readdir stat

UavcanNode::start

open opendir readreaddir stat

UavcanServers::migrateFWFromRoot

opendir readdir stat

uavcan::dynamic_node_id_server::centralized::Server::init

openread

uavcan_posix::FirmwareVersionChecker::createFwPaths

stat

uavcan_posix::dynamic_node_id_server::FileEventTracer::init

open

opendir

opendir

readdir

readdir

stat

_file_initialize

_file_read

lseek

_file_write

fsync

lseek

lseek

open

open

lseek

read

read

fsync

fsync

arm_doirq

irq_dispatch

irq

autosave_worker fsync lseekopen readwrite

param_save_default

fsynclseek open read write

board_app_initialize

stm32_sdio_initialize

init

boardctl

init

bson_decoder_init_file

read_int32

read

bson_decoder_next

read_int8

read

bson_encoder_append_double

write_double

write

write_x

write

bson_encoder_append_int32

write

bson_encoder_fini

fsync

lseek

write

write

close

nx_close

close

cmd_mount

mount

mount

exception_common

irq

expression

unaryexpression

stat

fat_allocatedirentry

fat_allocatelfnentry

open

fat_fscacheread

open

fat_bind

fat_mount

mount

fat_checkfsinfo

mount

fat_close

fat_sync

close

fat_dircreate

open

fat_dirwrite

open

fat_putlfname

open

fat_extendchain

fat_getcluster

lseekmkdir write

fat_ffcacheflush

fat_hwwrite

closefsync lseek write

fat_ffcacheinvalidate

write

fat_ffcacheread lseekreadwrite

fat_hwread

lseek readwrite

fat_findalias

fat_findsfnentry

open

fat_finddirentry

fat_findlfnentry

mkdir openopendir stat mkdir openstat

mkdir open opendir stat mkdir openstat

fat_fscacheflush closefsyncmkdir

close fsyncmkdir open write

closefsync mkdir open write

closefsync lseekmkdir mount openopendir readdir statwrite

close fsync lseek mkdir mountopen opendir readdir stat write

lseek mkdirwrite

mmcsd_read

close fsync lseek mkdir mountopen opendir read readdir stat write

mmcsd_write

close fsync lseek mkdir openwrite

fat_mkdir

mkdir mkdir

mkdir

mkdir

mkdir

fat_updatefsinfo

mkdir mount

mount

fat_open

open

open

fat_opendir

opendir

open

fat_uniquealias

open

fat_read

read

fat_readdir

readdir

fat_seek

lseek

lseek

lseek

lseek

fat_stat

stat

close fsync closefsyncclose fsync

open

close fsyncmkdir

fat_write

write

write

write write

write

file_close

close

file_seek

lseek

file_vopen

open

fopen

open

fsync

stm32_sdmmc_interrupt

irq

nx_seek

lseek

mkdir

mkdir

mmcsd_cardidentify

mmcsd_sendcmdpoll

init

stm32_recvshort

init

mmcsd_eventwait

stm32_eventwait

close fsync mkdir openstat write

mmcsd_get_r1

close fsync init lseek mkdir write

stm32_recvshortcrc

close fsyncmkdir stat write

stm32_waitresponse

close fsync init mkdir openwrite

mmcsd_mediachange

mmcsd_probe

init

init

init

mmcsd_sdinitialize

init

mmcsd_readsingle

close fsync lseek mkdirmount open opendir read readdir stat write

fsync

close fsync lseek mount open opendir read statwrite

mmcsd_transferready

close fsync mkdir open statwrite

mmsd_recv_r1

fsync lseek mkdir mount openread stat write

stm32_dmarecvsetup

close fsync lseek mkdir mount open opendir read readdir statwrite

stm32_waitenable

close fsync lseek mountopen read stat write

write init

mmcsd_verifystate

init

mmsd_get_scr

init

stm32_recvlong

init

stm32_sendcmd

closefsync init lseek mkdir mount open opendir read stat write

mmcsd_stoptransmission

write

write

write

fsync mkdiropen stat writeclose fsynclseek mkdir open stat write

closefsync lseekmkdir openstatwrite

init

mmcsd_writemultiple

write

mmcsd_writesingle

close fsync lseek mkdir openwrite

write

write

writewrite

write

stm32_dmasendsetup

write

write

write

closefsync mkdir write

close fsync mkdir write

closefsync lseek mkdir write

fsync mkdir open write

closefsync lseek mkdir open write

close fsync lseek mkdir write

close fsync mkdir open write

init

init

stm32_recvsetup

init

fsync init lseek mkdir mountopen read stat write

nx_mount

mount

nsh_consolemain

nsh_initscript

mountstat

nsh_execute

mount

stat

nsh_initialize

init

nsh_script

mount stat

nsh_main

mountstat

init

nsh_parse

nsh_parse_command

mountstat

mountstat

mount stat

close

mount

nx_read

read

lseek

nx_stat

stat_recursive

stat

nx_vopen

open

nx_write

write

nxtask_start

nxtask_startup

fsync init lseek mkdir mountopen opendir read readdir stat

work_lpthread

fsync lseek open read write

statmkdir open readdir init mountstat

task_main

fsync lseekopen read

uavcan_main

open opendirread readdir stat

open

open_mountpoint

opendir

opendir

param_export_internal

writewrite fsynclseek write

open

fsynclseek write

param_verify

read

read read

pthread_startup

px4::logger::LogWriterFile::run_helper

close fsync write

px4::logger::LogWriter::start_log_file

px4::logger::LogWriterFile::start_log

open

px4::logger::LogWriterFile::LogFileBuffer::close_file

close

px4::logger::LogWriterFile::LogFileBuffer::fsync

fsync

px4::logger::LogWriterFile::LogFileBuffer::start_log

open

px4::logger::LogWriterFile::LogFileBuffer::write_to_file

write

px4::logger::LogWriterFile::run

close fsyncwrite

closefsync write

open

px4::logger::LoggedTopics::add_topics_from_file

open

px4::logger::LoggedTopics::initialize_logged_topics

open

px4::logger::Logger::create_log_dir

mkdir

px4::logger::Logger::get_log_file_name

mkdir

px4::logger::Logger::initialize_topics

open

mkdir

open

px4::logger::Logger::start_stop_logging

mkdir open

px4::logger::util::check_free_space

readdir

px4::logger::Logger::start_log_file

openmkdir

mkdir open

readdir

read

read_x

read read

read

readdir

sdio_initialize

stm32_reset

init

sdmmc_getreg32

sdmmc_modifyreg32

sdmmc_putreg32

stat

stat

stm32_configwaitints

closefsync irq mkdir open read stat write

stm32_configxfrints

fsync irq mkdir write

stm32_dataconfig

closefsync init lseek mkdir mount open read stat write

close fsync mkdir openwrite

stm32_datadisable

close fsync init lseek mkdir open opendirread readdir stat write

close fsync lseek mkdir mount open opendir readreaddir stat writefsync fsync lseekmkdir mount open read stat writefsync lseek mkdir open opendirread readdir stat writeclose fsync lseek mkdir open writefsyncmkdir write close fsync lseek mkdir open writeclose fsync mkdir write

stm32_endtransfer

irq

irq

irq

stm32_endwait

irq

fsync irq mkdir statwrite

close fsync mkdir open write

fsync mkdirstat write

init

initinit

initclose fsync init lseek mkdirmount open read stat write

close fsyncmkdir write

init

stm32_setclkcr

init

stm32_setpwrctrl

init

init

init

irq

irq

fsync init lseek open opendir readstat write

close fsync init lseekmkdir mount open read stat write init

init

init

fsync lseek mkdir mount open statwrite

close fsyncmkdir open read write

close fsync init mkdir open write

close fsyncmkdir open write

closefsyncmkdir openwrite

fsync lseekopen

lseekread

fsync lseekopen read

uavcan::dynamic_node_id_server::StorageMarshaller::get

uavcan_posix::dynamic_node_id_server::FileStorageBackend::get

open read

uavcan::dynamic_node_id_server::centralized::Storage::getNodeIDForUniqueID

open read

uavcan::dynamic_node_id_server::centralized::Storage::init

openread

open readopenread

open opendir read readdirstat

stat

open

open read

stat

work_process

fsynclseek open read write

fsync lseek open readwrite

write

write

write

write

Call Graph for SDMMC Peripheral
SDMMC peripheral driver code

NuttX MMCSD Interface

I've put breakpoints on these three functions in the SDMMC peripheral.

The read, write and modify registers.

You can see that the entire driver only has two entry points:

Write and Read Data.

ModuleBase<Navigator>::run_trampoline

Navigator::run

statModuleBase<px4::logger::Logger>::run_trampoline

px4::logger::Logger::run

mkdir openreaddir

stat

stat

UavcanNode::init

UavcanServers::init

open opendirread readdir stat

UavcanNode::start

open opendir readreaddir stat

UavcanServers::migrateFWFromRoot

opendir readdir stat

uavcan::dynamic_node_id_server::centralized::Server::init

openread

uavcan_posix::FirmwareVersionChecker::createFwPaths

stat

uavcan_posix::dynamic_node_id_server::FileEventTracer::init

open

opendir

opendir

readdir

readdir

stat

_file_initialize

_file_read

lseek

_file_write

fsync

lseek

lseek

open

open

lseek

read

read

fsync

fsync

arm_doirq

irq_dispatch

irq

autosave_worker fsync lseekopen readwrite

param_save_default

fsynclseek open read write

board_app_initialize

stm32_sdio_initialize

init

boardctl

init

bson_decoder_init_file

read_int32

read

bson_decoder_next

read_int8

read

bson_encoder_append_double

write_double

write

write_x

write

bson_encoder_append_int32

write

bson_encoder_fini

fsync

lseek

write

write

close

nx_close

close

cmd_mount

mount

mount

exception_common

irq

expression

unaryexpression

stat

fat_allocatedirentry

fat_allocatelfnentry

open

fat_fscacheread

open

fat_bind

fat_mount

mount

fat_checkfsinfo

mount

fat_close

fat_sync

close

fat_dircreate

open

fat_dirwrite

open

fat_putlfname

open

fat_extendchain

fat_getcluster

lseekmkdir write

fat_ffcacheflush

fat_hwwrite

closefsync lseek write

fat_ffcacheinvalidate

write

fat_ffcacheread lseekreadwrite

fat_hwread

lseek readwrite

fat_findalias

fat_findsfnentry

open

fat_finddirentry

fat_findlfnentry

mkdir openopendir stat mkdir openstat

mkdir open opendir stat mkdir openstat

fat_fscacheflush closefsyncmkdir

close fsyncmkdir open write

closefsync mkdir open write

closefsync lseekmkdir mount openopendir readdir statwrite

close fsync lseek mkdir mountopen opendir readdir stat write

lseek mkdirwrite

mmcsd_read

close fsync lseek mkdir mountopen opendir read readdir stat write

mmcsd_write

close fsync lseek mkdir openwrite

fat_mkdir

mkdir mkdir

mkdir

mkdir

mkdir

fat_updatefsinfo

mkdir mount

mount

fat_open

open

open

fat_opendir

opendir

open

fat_uniquealias

open

fat_read

read

fat_readdir

readdir

fat_seek

lseek

lseek

lseek

lseek

fat_stat

stat

close fsync closefsyncclose fsync

open

close fsyncmkdir

fat_write

write

write

write write

write

file_close

close

file_seek

lseek

file_vopen

open

fopen

open

fsync

stm32_sdmmc_interrupt

irq

nx_seek

lseek

mkdir

mkdir

mmcsd_cardidentify

mmcsd_sendcmdpoll

init

stm32_recvshort

init

mmcsd_eventwait

stm32_eventwait

close fsync mkdir openstat write

mmcsd_get_r1

close fsync init lseek mkdir write

stm32_recvshortcrc

close fsyncmkdir stat write

stm32_waitresponse

close fsync init mkdir openwrite

mmcsd_mediachange

mmcsd_probe

init

init

init

mmcsd_sdinitialize

init

mmcsd_readsingle

close fsync lseek mkdirmount open opendir read readdir stat write

fsync

close fsync lseek mount open opendir read statwrite

mmcsd_transferready

close fsync mkdir open statwrite

mmsd_recv_r1

fsync lseek mkdir mount openread stat write

stm32_dmarecvsetup

close fsync lseek mkdir mount open opendir read readdir statwrite

stm32_waitenable

close fsync lseek mountopen read stat write

write init

mmcsd_verifystate

init

mmsd_get_scr

init

stm32_recvlong

init

stm32_sendcmd

closefsync init lseek mkdir mount open opendir read stat write

mmcsd_stoptransmission

write

write

write

fsync mkdiropen stat writeclose fsynclseek mkdir open stat write

closefsync lseekmkdir openstatwrite

init

mmcsd_writemultiple

write

mmcsd_writesingle

close fsync lseek mkdir openwrite

write

write

writewrite

write

stm32_dmasendsetup

write

write

write

closefsync mkdir write

close fsync mkdir write

closefsync lseek mkdir write

fsync mkdir open write

closefsync lseek mkdir open write

close fsync lseek mkdir write

close fsync mkdir open write

init

init

stm32_recvsetup

init

fsync init lseek mkdir mountopen read stat write

nx_mount

mount

nsh_consolemain

nsh_initscript

mountstat

nsh_execute

mount

stat

nsh_initialize

init

nsh_script

mount stat

nsh_main

mountstat

init

nsh_parse

nsh_parse_command

mountstat

mountstat

mount stat

close

mount

nx_read

read

lseek

nx_stat

stat_recursive

stat

nx_vopen

open

nx_write

write

nxtask_start

nxtask_startup

fsync init lseek mkdir mountopen opendir read readdir stat

work_lpthread

fsync lseek open read write

statmkdir open readdir init mountstat

task_main

fsync lseekopen read

uavcan_main

open opendirread readdir stat

open

open_mountpoint

opendir

opendir

param_export_internal

writewrite fsynclseek write

open

fsynclseek write

param_verify

read

read read

pthread_startup

px4::logger::LogWriterFile::run_helper

close fsync write

px4::logger::LogWriter::start_log_file

px4::logger::LogWriterFile::start_log

open

px4::logger::LogWriterFile::LogFileBuffer::close_file

close

px4::logger::LogWriterFile::LogFileBuffer::fsync

fsync

px4::logger::LogWriterFile::LogFileBuffer::start_log

open

px4::logger::LogWriterFile::LogFileBuffer::write_to_file

write

px4::logger::LogWriterFile::run

close fsyncwrite

closefsync write

open

px4::logger::LoggedTopics::add_topics_from_file

open

px4::logger::LoggedTopics::initialize_logged_topics

open

px4::logger::Logger::create_log_dir

mkdir

px4::logger::Logger::get_log_file_name

mkdir

px4::logger::Logger::initialize_topics

open

mkdir

open

px4::logger::Logger::start_stop_logging

mkdir open

px4::logger::util::check_free_space

readdir

px4::logger::Logger::start_log_file

openmkdir

mkdir open

readdir

read

read_x

read read

read

readdir

sdio_initialize

stm32_reset

init

sdmmc_getreg32

sdmmc_modifyreg32

sdmmc_putreg32

stat

stat

stm32_configwaitints

closefsync irq mkdir open read stat write

stm32_configxfrints

fsync irq mkdir write

stm32_dataconfig

closefsync init lseek mkdir mount open read stat write

close fsync mkdir openwrite

stm32_datadisable

close fsync init lseek mkdir open opendirread readdir stat write

close fsync lseek mkdir mount open opendir readreaddir stat writefsync fsync lseekmkdir mount open read stat writefsync lseek mkdir open opendirread readdir stat writeclose fsync lseek mkdir open writefsyncmkdir write close fsync lseek mkdir open writeclose fsync mkdir write

stm32_endtransfer

irq

irq

irq

stm32_endwait

irq

fsync irq mkdir statwrite

close fsync mkdir open write

fsync mkdirstat write

init

initinit

initclose fsync init lseek mkdirmount open read stat write

close fsyncmkdir write

init

stm32_setclkcr

init

stm32_setpwrctrl

init

init

init

irq

irq

fsync init lseek open opendir readstat write

close fsync init lseekmkdir mount open read stat write init

init

init

fsync lseek mkdir mount open statwrite

close fsyncmkdir open read write

close fsync init mkdir open write

close fsyncmkdir open write

closefsyncmkdir openwrite

fsync lseekopen

lseekread

fsync lseekopen read

uavcan::dynamic_node_id_server::StorageMarshaller::get

uavcan_posix::dynamic_node_id_server::FileStorageBackend::get

open read

uavcan::dynamic_node_id_server::centralized::Storage::getNodeIDForUniqueID

open read

uavcan::dynamic_node_id_server::centralized::Storage::init

openread

open readopenread

open opendir read readdirstat

stat

open

open read

stat

work_process

fsynclseek open read write

fsync lseek open readwrite

write

write

write

write

Call Graph for SDMMC Peripheral
FAT filesystem

NuttX MMCSD Interface

Above that we can see the FAT filesystem implementation in yellow.

This is a lot of code

ModuleBase<Navigator>::run_trampoline

Navigator::run

statModuleBase<px4::logger::Logger>::run_trampoline

px4::logger::Logger::run

mkdir openreaddir

stat

stat

UavcanNode::init

UavcanServers::init

open opendirread readdir stat

UavcanNode::start

open opendir readreaddir stat

UavcanServers::migrateFWFromRoot

opendir readdir stat

uavcan::dynamic_node_id_server::centralized::Server::init

openread

uavcan_posix::FirmwareVersionChecker::createFwPaths

stat

uavcan_posix::dynamic_node_id_server::FileEventTracer::init

open

opendir

opendir

readdir

readdir

stat

_file_initialize

_file_read

lseek

_file_write

fsync

lseek

lseek

open

open

lseek

read

read

fsync

fsync

arm_doirq

irq_dispatch

irq

autosave_worker fsync lseekopen readwrite

param_save_default

fsynclseek open read write

board_app_initialize

stm32_sdio_initialize

init

boardctl

init

bson_decoder_init_file

read_int32

read

bson_decoder_next

read_int8

read

bson_encoder_append_double

write_double

write

write_x

write

bson_encoder_append_int32

write

bson_encoder_fini

fsync

lseek

write

write

close

nx_close

close

cmd_mount

mount

mount

exception_common

irq

expression

unaryexpression

stat

fat_allocatedirentry

fat_allocatelfnentry

open

fat_fscacheread

open

fat_bind

fat_mount

mount

fat_checkfsinfo

mount

fat_close

fat_sync

close

fat_dircreate

open

fat_dirwrite

open

fat_putlfname

open

fat_extendchain

fat_getcluster

lseekmkdir write

fat_ffcacheflush

fat_hwwrite

closefsync lseek write

fat_ffcacheinvalidate

write

fat_ffcacheread lseekreadwrite

fat_hwread

lseek readwrite

fat_findalias

fat_findsfnentry

open

fat_finddirentry

fat_findlfnentry

mkdir openopendir stat mkdir openstat

mkdir open opendir stat mkdir openstat

fat_fscacheflush closefsyncmkdir

close fsyncmkdir open write

closefsync mkdir open write

closefsync lseekmkdir mount openopendir readdir statwrite

close fsync lseek mkdir mountopen opendir readdir stat write

lseek mkdirwrite

mmcsd_read

close fsync lseek mkdir mountopen opendir read readdir stat write

mmcsd_write

close fsync lseek mkdir openwrite

fat_mkdir

mkdir mkdir

mkdir

mkdir

mkdir

fat_updatefsinfo

mkdir mount

mount

fat_open

open

open

fat_opendir

opendir

open

fat_uniquealias

open

fat_read

read

fat_readdir

readdir

fat_seek

lseek

lseek

lseek

lseek

fat_stat

stat

close fsync closefsyncclose fsync

open

close fsyncmkdir

fat_write

write

write

write write

write

file_close

close

file_seek

lseek

file_vopen

open

fopen

open

fsync

stm32_sdmmc_interrupt

irq

nx_seek

lseek

mkdir

mkdir

mmcsd_cardidentify

mmcsd_sendcmdpoll

init

stm32_recvshort

init

mmcsd_eventwait

stm32_eventwait

close fsync mkdir openstat write

mmcsd_get_r1

close fsync init lseek mkdir write

stm32_recvshortcrc

close fsyncmkdir stat write

stm32_waitresponse

close fsync init mkdir openwrite

mmcsd_mediachange

mmcsd_probe

init

init

init

mmcsd_sdinitialize

init

mmcsd_readsingle

close fsync lseek mkdirmount open opendir read readdir stat write

fsync

close fsync lseek mount open opendir read statwrite

mmcsd_transferready

close fsync mkdir open statwrite

mmsd_recv_r1

fsync lseek mkdir mount openread stat write

stm32_dmarecvsetup

close fsync lseek mkdir mount open opendir read readdir statwrite

stm32_waitenable

close fsync lseek mountopen read stat write

write init

mmcsd_verifystate

init

mmsd_get_scr

init

stm32_recvlong

init

stm32_sendcmd

closefsync init lseek mkdir mount open opendir read stat write

mmcsd_stoptransmission

write

write

write

fsync mkdiropen stat writeclose fsynclseek mkdir open stat write

closefsync lseekmkdir openstatwrite

init

mmcsd_writemultiple

write

mmcsd_writesingle

close fsync lseek mkdir openwrite

write

write

writewrite

write

stm32_dmasendsetup

write

write

write

closefsync mkdir write

close fsync mkdir write

closefsync lseek mkdir write

fsync mkdir open write

closefsync lseek mkdir open write

close fsync lseek mkdir write

close fsync mkdir open write

init

init

stm32_recvsetup

init

fsync init lseek mkdir mountopen read stat write

nx_mount

mount

nsh_consolemain

nsh_initscript

mountstat

nsh_execute

mount

stat

nsh_initialize

init

nsh_script

mount stat

nsh_main

mountstat

init

nsh_parse

nsh_parse_command

mountstat

mountstat

mount stat

close

mount

nx_read

read

lseek

nx_stat

stat_recursive

stat

nx_vopen

open

nx_write

write

nxtask_start

nxtask_startup

fsync init lseek mkdir mountopen opendir read readdir stat

work_lpthread

fsync lseek open read write

statmkdir open readdir init mountstat

task_main

fsync lseekopen read

uavcan_main

open opendirread readdir stat

open

open_mountpoint

opendir

opendir

param_export_internal

writewrite fsynclseek write

open

fsynclseek write

param_verify

read

read read

pthread_startup

px4::logger::LogWriterFile::run_helper

close fsync write

px4::logger::LogWriter::start_log_file

px4::logger::LogWriterFile::start_log

open

px4::logger::LogWriterFile::LogFileBuffer::close_file

close

px4::logger::LogWriterFile::LogFileBuffer::fsync

fsync

px4::logger::LogWriterFile::LogFileBuffer::start_log

open

px4::logger::LogWriterFile::LogFileBuffer::write_to_file

write

px4::logger::LogWriterFile::run

close fsyncwrite

closefsync write

open

px4::logger::LoggedTopics::add_topics_from_file

open

px4::logger::LoggedTopics::initialize_logged_topics

open

px4::logger::Logger::create_log_dir

mkdir

px4::logger::Logger::get_log_file_name

mkdir

px4::logger::Logger::initialize_topics

open

mkdir

open

px4::logger::Logger::start_stop_logging

mkdir open

px4::logger::util::check_free_space

readdir

px4::logger::Logger::start_log_file

openmkdir

mkdir open

readdir

read

read_x

read read

read

readdir

sdio_initialize

stm32_reset

init

sdmmc_getreg32

sdmmc_modifyreg32

sdmmc_putreg32

stat

stat

stm32_configwaitints

closefsync irq mkdir open read stat write

stm32_configxfrints

fsync irq mkdir write

stm32_dataconfig

closefsync init lseek mkdir mount open read stat write

close fsync mkdir openwrite

stm32_datadisable

close fsync init lseek mkdir open opendirread readdir stat write

close fsync lseek mkdir mount open opendir readreaddir stat writefsync fsync lseekmkdir mount open read stat writefsync lseek mkdir open opendirread readdir stat writeclose fsync lseek mkdir open writefsyncmkdir write close fsync lseek mkdir open writeclose fsync mkdir write

stm32_endtransfer

irq

irq

irq

stm32_endwait

irq

fsync irq mkdir statwrite

close fsync mkdir open write

fsync mkdirstat write

init

initinit

initclose fsync init lseek mkdirmount open read stat write

close fsyncmkdir write

init

stm32_setclkcr

init

stm32_setpwrctrl

init

init

init

irq

irq

fsync init lseek open opendir readstat write

close fsync init lseekmkdir mount open read stat write init

init

init

fsync lseek mkdir mount open statwrite

close fsyncmkdir open read write

close fsync init mkdir open write

close fsyncmkdir open write

closefsyncmkdir openwrite

fsync lseekopen

lseekread

fsync lseekopen read

uavcan::dynamic_node_id_server::StorageMarshaller::get

uavcan_posix::dynamic_node_id_server::FileStorageBackend::get

open read

uavcan::dynamic_node_id_server::centralized::Storage::getNodeIDForUniqueID

open read

uavcan::dynamic_node_id_server::centralized::Storage::init

openread

open readopenread

open opendir read readdirstat

stat

open

open read

stat

work_process

fsynclseek open read write

fsync lseek open readwrite

write

write

write

write

Call Graph for SDMMC Peripheral
libc and tasks

And finally above that we can see standard libc functions

For example: fsync on the bottom left and open on the bottom right

The yellow tasks is the actual logger.

The great thing about this is that you don't need to instrument your code.

You can do this on any firmware without modifcations.

Very helpful for getting to know a code base.

Embedded Debug Tools: emdbg
Modular Toolbox for Scripting GDB

• pip install emdbg

• Fully open-source: https://github.com/auterion/embedded-debug-tools

• Instructions are on GitHub and API docs via pdoc emdbg

• Specific for STM32/PX4/NuttX, but intentionally modular so you can hack it.

• You are very welcome to contribute, I'm actively maintaining this project!

All tools in this talk are from emdbg!

reference to module: [emdbg.analyze.calltrace]

You can look at how this is implemented in detail in the open-source Embedded Debug Tools.

Python3 library, BSD licensed, fully open-source on GitHub with lots of documentation.

It's highly modular so you can reuse it, even though the higher level tools are STM32/PX4/NuttX specific

Actively maintained, feel free to contribute or just use it as a reference, you can also ask questions there.

The reference at the bottom right refers to the python module.

Ok, let's look at some more GDB tools.

https://github.com/auterion/embedded-debug-tools

Inspecting NuttX tasks
aka "RTOS threads"

(gdb) px4_tasks

 PID NAME %CPU USED/STACK STATE WAITING FOR
 0 Idle Task 30.5 354/ 726 RUN
 3 init 0.0 2348/ 3080 w:sem 0x2007dbe0
 634 wq:uavcan 1.5 1692/ 3624 w:sem 0x20003a00
 699 wq:SPI3 7.2 1336/ 2336 w:sem 0x20005460
 718 wq:I2C4 0.4 912/ 2336 w:sem 0x2000fd80
 830 wq:nav_contr 4.1 1276/ 2280 w:sem 0x2000c300
 840 wq:rate_ctrl 7.7 1492/ 3152 w:sem 0x20016420
 842 wq:INS0 11.4 4252/ 6000 w:sem 0x200190a0
 847 commander 1.5 1244/ 3224 w:sig signal
1557 logger 0.4 2556/ 3648 w:sem 0x2003f200

[emdbg.debug.gdb#px4_tasks]

NuttX is a RTOS with preemptive threads, PX4 uses a lot of threads.

Here I've created our first GDB Python tool: px4_tasks

it lists all the threads with their PID, name, CPU and stack usage, and most importantly what it's waiting for.

Semaphores are the bain of my existance, therefore being able to see their state is great for my sanity.

Custom GDB User Commands
NuttX not supported by GDB/JLink/OpenOCD

class PX4_Tasks(gdb.Command):
 def __init__(self):
 super().__init__("px4_tasks", gdb.COMMAND_USER)

 def invoke(self, argument, from_tty):
 print(px4.all_tasks_as_table(gdb))

1. Find task list: gdb.lookup_global_symbol("g_pendingtasks")

2. Directly read task state: tcb["name"].string()

3. Indirectly compute the rest: Search for stack watermark, find CPU time, …

4. Task switching by writing registers: Clunky.
[emdbg.debug.gdb#px4_tasks]

So how does this work?

This is implemented as a custom GDB user command.

- GDB can lookup symbols in various scopes.

- NuttX uses a so called ready list of tasks that are runnable.

- We find that in SRAM and then iterate over each task struct.

- There are simple attributes of the struct that we can directly access

- Others need some more code like a binary search to find the stack watermark, look at timers to figure out CPU time etc

- So, complexity can be a scaled up or down

Inspecting Interrupt State
NuttX intercepts NVIC to implement IRQs

(gdb) px4_interrupts

IRQ EPA P ADDR = FUNCTION ARGUMENT
-13 -1 0x80220c4 = arm_hardfault
 -5 e 0 0x802221c = arm_svcall
 -1 e 80 0x8011efc = stm32_timerisr
 11 e 80 0x800936c = stm32_dmainterrupt 0x20020740 <g_dma>
 12 e 80 0x800936c = stm32_dmainterrupt 0x20020758 <g_dma+24>
 27 80 0x816b0f8 = io_timer_handler0
 31 e 80 0x816826a = stm32_i2c_isr 0x20020b44 <stm32_i2c1_priv>
 37 e 80 0x8008dd4 = up_interrupt 0x200203a0 <g_usart1priv>
 39 80 0x8008dd4 = up_interrupt 0x20020570 <g_usart3priv>
 40 e 80 0x8167df8 = stm32_exti1510_isr
 59 e a 80 0x800936c = stm32_dmainterrupt 0x20020848 <g_dma+264>
 65 ep 80 0x81300a4 = can2_irq
103 e 80 0x816cf64 = stm32_sdmmc_interrupt

[emdbg.debug.gdb#px4_interrupts]

Another example, NuttX implements its own dynamic interrupt dispatcher in assembly.

Therefore every interrupt handler is the same function, not very useful for debugging.

This small tool finds the NuttX dispatch table and renders it.

You can also see the priority (all the same, NuttX doesn't support nested interrupts)

and whether the interrupt is enabled, pending, or active.

Here the IRQ 59 DMA is active, and IRQ 65 is pending, so it'll be next.

Super useful to figure out what functions to put a breakpoint on.

Inspecting GPIO State
Reading peripherals directly

(gdb) px4_gpios

PIN CONFIG I O AF NAME FUNCTION
A0 AN ADC1_IN0 SCALED_VDD_3V3_SENSORS1
A3 IN _ USART2_RX USART2_RX_TELEM3
A5 ALT+H ^ 0 SPI1_SCK SPI1_SCK_SENSOR1_ICM20602
A6 IN ^ SPI6_MISO SPI6_MISO_EXTERNAL1
A8 IN+PU ^ TIM1_CH1 FMU_CH4
A9 IN+PD _ USB_OTG_FS_VBUS VBUS_SENSE
A11 ALT+VH _ 0 USB_OTG_FS_DM USB_D_N
A12 ALT+VH _ 0 USB_OTG_FS_DP USB_D_P
A13 ALT+PU+VH _ 5 SWDIO FMU_SWDIO
A14 ALT+PD ^ 0 SWCLK FMU_SWCLK
A15 OUT ^ ^ SPI6_nCS2_EXTERNAL1

[emdbg.debug.gdb#px4_gpios]

Ok, enough NuttX, let's look at some STM32 specific tools.

I often need to know the state the microcontroller pins, so this tool shows them to me.

You can see the pin name, the Configuration, the input and output state, the alternate function, and signal names and function.

For example, the pin A6 and A8 are inputs with a pullup, both currently high.

Pin A13 and A14 are the SWD connection, we can see that their are interally connected via the alternate function.

The data connection is also configured for Very High datarate (VH).

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0

 M
H

z
(m

a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it

A
X

I
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2

 (
2

0
0

M
H

z
)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4

 (
2

0
0

M
H

z
)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4

 (
2

0
0

M
H

z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT
L

S
L

S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
(m

a
x
)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)IWDG

Temperature
sensor

HASH

3DES/AES

Inspecting GPIO State
Debugger can access anything that's on the bus!

Well, how does this work?

The debugger can not only access the internal SRAM, but also every other bus:

It first goes through the internal 64-bit bus matrix

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0

 M
H

z
 (

m
a

x
)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it
 A

X
I

B
U

S
-M

A
T

R
IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2

 (
2

0
0

M
H

z
)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4

 (
2

0
0

M
H

z
)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4

 (
2

0
0

M
H

z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
(m

a
x
)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)IWDG

Temperature
sensor

HASH

3DES/AES

Inspecting GPIO State
Debugger can access anything that's on the bus!

then goes through another 32-bit bus matrix before finally accessing the register file of the GPIO peripherals.

Inspecting GPIO State
Consulting the Reference Manual

For this to work I need to know the exact address of the GPIO peripheral, which I can find in the STM32H7 reference manual.

I also need to interpret the bits inside the register, which I can also find in there.

I then wrote a short Python script that iterates over each pin and converts the bit fields to the table you just saw.

ok, but I cannot write a custom parser for every peripheral, wouldn't it be nice if we had a machine-readable register description?

Inspecting Any Peripheral
using System View Description (SVD) files

• CMSIS-SVD files describe the registers in a standardized XML format.

• Intended for debuggers, IDEs, and code generators for language bindings.

• Available from vendors with varying completeness, resolution, and quality.

• STM32 SVD files are problematic, patches available from stm32-rs project.

• pengi/arm_gdb provides a GDB plugin to read registers on device via SVD.

• emdbg just wraps this tool and adds a difference viewer.

[emdbg.debug.gdb#px4_pshow]

Well… the System View Description files are exactly that.

A standardized XML format that describes the register maps, so I don't have to copy it out of the PDFs.

The STM32 SVD files are a little broken, there are manual patches available.

There is a great GDB plugin from pengi that does the heavy lifting for you, it loads the SVD file and tells the debug probe to read the right memory and converts this into a
structured form.

emdbg just wraps this tool for convenience.

Inspecting Any Register
using System View Description (SVD) files

(gdb) px4_pshow DMA2.S0CR

DMA2.S0CR = 0000010001010100 // stream x configuration register
 EN 0 - 0 // Stream enable / stream ready
 DMEIE 0. - 0 // Direct mode error interrupt enable
 TEIE 1.. - 1 // Transfer error interrupt enable
 HTIE 0... - 0 // Half transfer interrupt enable
 TCIE 1.... - 1 // Transfer complete interrupt enable
 PFCTRL 0..... - 0 // Peripheral flow controller
 DIR 01...... - 1 // Data transfer direction
 CIRC 0........ - 0 // Circular mode
 PINC 0......... - 0 // Peripheral increment mode
 MINC 1.......... - 1 // Memory increment mode
 PSIZE ...00........... - 0 // Peripheral data size
 MSIZE .00............. - 0 // Memory data size

[emdbg.debug.gdb#px4_pshow]

This is what it looks like

here we're looking at the DMA2 stream 0 configuration register.

You can see the raw register value and then below all the bitfields with the name and description

This is very helpful for a quickly checking the configuration of a peripheral without manually unfiddling the bits.

You still need to check the reference manual for the larger picture.

Visualizing Register Differences
using hardware watchpoints and SVD files

[emdbg.debug.gdb#px4_pwatch]

We can also use this in combination with hardware watchpoints.

The device itself watches a memory region for writes and then triggers a breakpoint.

For example here I can see what code actually writes to this Stream 0 register, and what the differences were.

You can also see the backtrace here, which shows that the SDCard driver from before is calling the DMA driver.

Coredumping
using SVD files and CrashDebug

[emdbg.debug.gdb#px4_coredump]

CrashDebug
File TCP

GDB Server

Coredump
Memory + Peripherals

• GDB reads all volatile memory and registers to dump them into a file.

• ELF file provides non-volatile memory and debug symbols.

• Can be done a runtime too, see adamgreen/CrashCatcher for HardFaults.

• adamgreen/CrashDebug presents memory as a GDB Server to GDB.

• Great for sharing full device state with remote engineers for pair debugging!

Finally, the last GDB tool I'll show you is coredumping support.

Not natively implemented, so we need to do it ourselves:

It's relatively simple: read out all volatile memory like SRAM and peripherals and store them in a file.

The non-volatile memory comes from the ELF file.

The SVD files are very useful so we do not have to copy 4GBs of data. Only takes a few seconds.

Then write a GDB server that pretends to be connected to a device, but actually serves any data from the coredump file.

The CrashDebug utility from Adam Green does exactly that and it works really well. I can recommend it.

You can archive devices in their buggy state and share it with other engineers or try again later.

All of there tools are running, while the CPU is halted. What if you cannot halt the CPU?

Profiling via Logging
aka printf debugging

• Output logging messages over UART or logged to non-volatile memory.

• Use USB-Serial adapter to see log and then post process it.

• Ubiquitous and very effective, lots of existing libraries for it.

• Very invasive, you need to add non-trivial amounts of code for logging.

• Still extremely valuable tool for narrowing down the issue area.

• Often very slow compared to event rate, way too slow for real-time.

You need to profile.

The simplest profiling method is logging, usually over Serial link.

It's very low-cost, very effective and everyone uses it.

And it is of course a necessary tool to get an idea of what went wrong.

But it's waaaaay to slow for our processor (480MHz).

A lot of events.

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0

 M
H

z
(m

a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it

A
X

I
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2

 (
2

0
0

M
H

z
)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4

 (
2

0
0

M
H

z
)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4

 (
2

0
0

M
H

z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
(m

a
x
)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)IWDG

Temperature
sensor

HASH

3DES/AES

Real-time Profiling
via Real-Time Transfer (SEGGER RTT)

• Log to on-device ring buffer via API.

• Debug probe async reads ring buffer.

• Timestamps and serialization in software!

• SEGGER SystemView 
to render the data.

• Proprietary with 
commercial license.

• No NuttX support!

We need a high-bandwidth connection:

Simple idea: log to ring buffer in SRAM and let the debug probe do the transfer.

This is the idea behind SEGGERs SystemView, which provides a library to serialize RTOS events and timestamp it in software.

threads, scheduling, semaphores, interrupts.

BUT: It's proprietary and costs money and it has no native NuttX support.

And, still actually a fairly high overhead.

Real-time Profiling
ITM/DWT via SWO pin

• Log 8/16/32-bit values to 32 ITM channels, DWT traces exceptions:  
ITM->PORT[3] = 0xdeadbeef;

• Hardware manages serialization, timestamps, and queues with priorities.

• Output ~2MB/s UART stream over dedicated SWO pin via STlinkv3.

• Orbcode is an open-source project to work with Cortex-M debug data.

• emdbg/ext/orbetto is a custom tool to convert ITM/DWT to ftrace packets.

[ext/orbetto]

Orbetto
SWO Protobuf

Cortex-M Perfetto

Wouldn't it be great if we could instead let the hardware do the serialization and timestamping?

Well, look no further than the built-in Instrumentation Trace Macrocell (ITM) and Data Watchpoint and Trace (DWT) peripherals.

They provide 32 channels that you can write 8,16 or 32-bit values into and also logs exception entry and exit.

The whole thing is implemented in hardware, so you only need to add a single line statement to write to a ITM channel.

Serial Wire Output is basically a very fast UART. STLinkv3 can read up to 2MB/s via this link.

However, this is a compact binary format that we need to parse, which is what the Orbcode project provides.

With this parser we can demultiplex the bit stream and convert it to standard ftrace packets.

This tool is written in C++ and is called orbetto because.

Trace Visualization
via Perfetto UI

Try it online yourself: github.com/auterion/embedded-debug-tools => ext/orbetto

And this is then visualized by perfetto, which is actually meant to visualize Android and Linux traces.

At the top, you can see the CPU is multiplexing all the different threads, but you can also see the interrupts just below.

Note that is happening all within the same millisecond, each tick is 100µs.

NuttX schedules a lot, because it is an RTOS!

On the left you can the tasks with name and PID. PX4 has a lot of different threads.

We have a lot of work queues for all the sensors, which you can see when the workqueue item is called but often the thread actually gets interrupted a lot.

This view is incredibly educational to see how an RTOS actually works.

http://github.com/auterion/embedded-debug-tools

Trace Visualization
via Perfetto UI

[ext/orbetto]

But it actually becomes more interesting if we zoom out, we can see some more patterns.

Here every tick is 1ms.

Spotting Timing Issues
via Perfetto UI

[ext/orbetto]

And even further: here every tick is 100ms.

And suddenly we see a hickup: The I2C1 task is irregular, because there was a power glitch and the sensors had to be reinitialized.

This kind of visual debugging with you eyes is incredibly fast to spot timing issues.

It also makes you look like a wizard if you just whip this out and show other people how PX4 works.

But SWO is still limited by bandwidth, so ARM provides you with even more hardware:

Real-time Tracing
ITM/DWT/ETM via TRACE pin

• ETM can trace all instructions.

• High-bandwidth 4-bit output interface  
≤125MB/s requires FPGA and USB3

• J-Trace is ~2000€, ORBTrace is ~200€.

• ORBTrace mini is open-source! Go hack it!

• What do you do with so much data? 
Instrumentation for fuzzing: µAFL

• I'm looking for an intern to work on this at
Auterion with me. Are you interested?

Parallel tracing gives you a 4-bit wide data bus up to 1GBit/s in theory.

In addition to all the previous functionality, there is also a compressed instruction trace, that allows you to reconstruct the program flow off device.

This requires custom FPGA hardware with a fast USB connection.

The J-Trace costs a lot of money. I got one for work, and it's not as well documented as I had hoped.

The Orbtrace is open-source, so it's much more hackable, and its 10x less expensive too.

There's a very helpful community around it, smart people work on this.

Go hack with it!

What do you do with this giant amount of data?

One research paper I saw used the branching information in the trace to run american fuzzy lop on the device and find lots of bugs in STM32 drivers.

It would be very helpful to find bugs in an Autopilot before they happen in flight!

I'm right now looking for an intern to work with me on this at Auterion!

Real-time Profiling
Comparison

Profiling Aspect Logging
via Serial

Ring Buffer
via Debug Probe

ITM/DWT
via SWO

ITM/DWT/ETM
via TRACE

Serialization ASCII via printf 8-bit values 8/16/32-bit values 8/16/32-bit values

Multiplexing Manual Multiple queues 32 ITM channels 32 ITM channels

Timestamp Manual Manual DWT cycle counter DWT cycle counter

Exceptions Manual Manual Any exception

entry/exit via DWT

DWT + ETM
Instructions

Buffers Depends on

UART driver ≥1kB ring buffer Small hardware buffer 4kB hardware buffer

Speed ~11kB/s

(115200 baud) ≤4MB/s if using J-Link ≤3MB/s via SWO ≤100MB/s via 4-bit

Overhead Very large Large Small Small

External Support Cheap USB-Serial SWD debug probe Very fast USB-Serial Orbtrace or J-Trace

SWO is the sweet spot regarding cost of debug probe and feature set.

Orbtrace mini is pretty good for high-bandwith Tracing ≤400Mbit/s.

Conclusion
and Future Work

• Use GDB more to debug ARM Cortex-M! Script GDB with the Python API!

• Use the built-in debug hardware of ARM Cortex-M devices for profiling!

• Orbcode is an amazing project with a great community.

• Orbtrace is a fantastic deal for a trace probe! BUT: needs contributions.

• Please try out emdbg and give me some feedback.

• Thanks for you attention! Questions?

So this is the end of the line, this is all the hardware and tooling I currently use for debugging.

In conclusion: Debug all the things!

Use more GDB, use more debug hardware!

Test and contribute to the Orbcode project, play around with the Orbtrace.

They are looking for competent embedded people to liberate the debug tools from commercial vendors!

Oh and also try out my embedded debug tools or maybe look at them for inspiration.

Thank you and do you have questions?

Debugging Microcontrollers
A debugging session is active. Quit anyway? (y or n) y

Niklas Hauser likes microcontrollers.

Homepage:

Fediverse:

Code:

emdbg:

Orbcode:

salkinium.com

@salkinium@chaos.social

github.com/salkinium

github.com/auterion/embedded-debug-tools

orbcode.org

My name is Niklas and I like microcontrollers.

https://salkinium.com
https://chaos.social/@salkinium
https://github.com/salkinium
https://github.com/auterion/embedded-debug-tools
https://orbcode.org

