Debugging Microcontrollers

Debugging and Profiling ARM Cortex-M
with GDB and Python.

Niklas Hauser, CCCamp23

Thank you for the introduction.
Thanks to Milliways for the opportunity to talk here.
And thanks to the Camp for the general awesomeness.



Who?

Hello, my name is Niklas and | like microcontrollers
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The short introduction is: My name is Niklas and | like microcontrollers.
The longer introduction is:

| started studying Computer Science at the RWTH Aachen University some time ago.
By "studying" | mean, building autonomous robots at the Roboterclub Aachen e.V. starting in 2010.
For this project, we built a C++ library which today is known as modm.io, a C++23 library generator that supports 3700+ Cortex-M devices, which | co-maintain.
| then got bored and started at ARM working on ARMv8-M sandboxing, before | got bored of that and returned to the university to study for my masters degree.

And by "studying" | mean, digitizing the railway signalling lab in the transportation engineering department and designing a 32nd-scale modular signalling system out
of PCBs and 3D prints.

| finished my masters degree and now work at Auterion debugging the open-source PX4 Autopilot for commercial drones.
In summary: My name is Niklas and | like microcontrollers.


http://roboterclub.rwth-aachen.de
http://modm.io
http://salkinium.com/elva
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Why?

PX4 Autopilot runs on NuttX

» Full RTOS with peripheral drivers, extensive
filesystem and communication protocols.

* Many external sensors and components.

» Often subtle bugs that only manifest
heuristically under the right conditions.

» Complex code base: 2MB binary, 6 months
to get up to speed while building tooling.

* Very fast STM32H7 (480MHz) can easily
overwhelm debug logging options.

Dimensions: 47,5 x 97,5 x 23,5 mm

[Auterion Skynode]

For my day job | debug the Skynode Autopilot that you can see here on the right.

Contains a very fast STM32H7 in the top left with a lot of sensors.
The rest of the board is for linux and wired and wireless connectivity.
The Autopilot runs PX4, which is an open-source project.

NuttX RTOS is complex and has subtle bugs.

My job... is just... debug.

Difficult because large code base and fast processor.

| want to share how | debug and some tools | wrote to help me.



What?

Microcontrollers are Embedded Systems

» CPU connected via internal busses to memory and peripherals.

* Programmable, highly flexible real-time capabilities and data processing.
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This talk is about microcontrollers, specifically with the ARM Cortex-M architecture.

Microcontrollers contain a microprocessor, here a Cortex-M7 in light green on the left, connected via a bus system to non-volatile memories, like Flash, and volatile
memories like SRAM (yellow), as well as a number of special purpose peripherals.

These architectures can be quite complex, here you can see the CPU to several busses in gray, connected to several peripherals on different clock domains. You can also
see Direct Memory Access (DMA) peripherals, that can move data around without CPU interaction.

Peripherals can be internal, like the Random Number Generator (RNG) down here,
or external, like the Ethernet Media Access Controller up there which connects over Media Intependent-Interface (Mll) to an external PHY via the microcontroller pins.

Memories typically in the kilobytes, high-end devices can have a few megabytes, so microcontrollers cannot natively run Linux.
Allows for highly configurable, very low-latency responses to internal and external events via an RTOS.

On the left, the CPU itself also has some external signals for debugging, and in this talk I'll show you how to use them.



Remote Debugging

One does not simply connect into Cortex-M
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If you want to debug a microcontroller here on the bottom right

- You need to connect the Serial Wire Debug (SWD) signals to a hardware debug probe
- | can recommend the STLinkv3, since it costs only 11€ and has a built-in Serial

- The debug probe then communicates over USB to the driver software
- Typically this is OpenOCD (On-Chip Debug)
- Implements the GDB server protocol

- GDB connects to the GDB Server via TCP
- You can already debug now using the GDB command line

- Most IDEs wrap the debug functionality
- Communicate with GDB using the Machine Interface
- Ml is an ASCII protocol for communicating with GDB as a User Interface

- This has a lot of latency, it's definitely not real-time.
- Particularly bad if you connect GDB over Wifi to Server. This will be a problem for later.



GDB? The GNU DeBugger },

arm-none-eabi-gdb with Python 3 support S

» GDB is part of the official arm-none-eabi distribution based on GCC 12.
* ARM builds GDB without Python 3 support !!!

* Download the xPack arm-none-eabi-gcc12 toolchain instead.

« BUT: only symlink arm-none-eabi-gdb-py3 into your path.

e arm-none-eabi-gdb-py3 has a stand-alone Python 3.11 runtime!

» GDB usually works fine with debug symbols from any compiler.

GDB is the debugger that comes with your arm-none-eabi toolchain

ARM provides an official and tested version, use that one for compilation.

But the GDB is not compiled with Python3 support.

So you need to install the xPack version, but only symlink the GDB, not the rest
Alternatively use the GDB from your distribution at your own risk.



How to start a GDB session W )

using a OpenOCD debug probe S

1. Launch OpenOCD with your target configuration:
openocd -f board/nucleo f429zi.cfg -c "init"

2. Launch GDB with the firmware ELF file and connect to the GDB server:
arm-none-eabi-gdb-py3 -ex "target extended-remote :3333"
firmware.elf

3. ctrl-c and continue: halt and run execution on microcontroller.

4. step, next, finish: step into/over/out of statements/instructions.
ult the
e cONSY hinel
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5. backtrace: show where you are.

Let's go over the basics of how to launch a GDB debug session.

- Connect the debug probe to the microcontroller, make sure it has power

- Launch OpenOCD with the correct target configuration and issue the init command

- Launch GDB from another process with the ELF file that contains the debug symbols and connect locally
- Note that you can also pass an IP with the port if you need to debug over the local network.

- Super basic commands are: ctrl-c for interrupting execution.

- GDB has now HALTED the CPU, while you debug.

- Be careful what you debug, drones tend to fall out of the sky if the Avionics fail.

- You can single step through your code.

- And you can show where you are with the backtrace command.

There are many GDB tutorials online, please refer to them if you're a beginner.
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for customizing GDB v
e Import GDB and Python scripts with the source script.py command.
e import gdb is implemented directly in GDB using the CPython API!
* Python API cannot write variables! gdb.execute ("set var = 1")

» Python API does not expose C preprocessor defines! No workaround.

* Python APl is language-independent and lacks best practice examples.

» C/C++ type system horseshoed into duck-typed Python syntax? ne GDhB
nsu ine!
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GDB has it's own script language, but it's quite limited.

To extend GDB a Python API exists:

- You can source Python scripts inside GDB

- The gdb module only exists inside GDB you cannot call it from outside, it directly interfaces with the C API

- There are some limitations:

You cannot write variables, you must do this via the GDB scripting language

You cannot access all the debug information, some stuff is missing like C preprocessor macros. A big issue for knowing the NuttX configuration.

Very well documented at API level, but how to use it to do non-trivial things is fairly unclear. | had to read source code to figure out what the limitations are.
language independ API can be a bit wonky for C/C++ semantics

I'm not going to show you a lot of code, rather talk about concepts.



Plotting Call Graphs

%)
to understand a codebase “\/

Problem: Who is calling this function?

1. Set a breakpoint and log the backtrace of the breakpoint location to a file:
break function
commands
backtrace
continue
end

2. Convert to dot and render via graphviz to SVG and explore via browser.
Better: Convert to gprof format and view with KCachegrind.

3. Requires no instrumentation, but very slow ~12 breakpoints / sec.

[emdbg.analyze.calltrace]

Let's start with something simple:

PX4 Autopilot project contains several million lines of code
Only started working with it about 6 months ago
So | need to get an overview: who is calling this function?

Log the GDB output and postprocess it with a Python script
Convert to a graph either via graphviz for custom visualizations
Or use standardized format and view with KCachegrind

This is very slow, because of the latency.

| can set a breakpoint on a function and attach a backtrace to this breakpoint then immediately continue.
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- One source of issues is logging data to the SDCard inside the Autopilot.

- | wanted to know what functions were involved in accessing the SDCard peripheral.
This is the resulting call graph.

Split into the SDMMC peripheral at the bottom

FAT filesystem in the middle

the NuttX libc interface above that

and the tasks.



Call Graph for SDMMC Peripheral

SDMMC peripheral driver code
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I've put breakpoints on these three functions in the SDMMC peripheral.

The read, write and modify registers.

You can see that the entire driver only has two entry points:

Write and Read Data.




NuttX MMCSD Interface
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Above that we can see the FAT filesystem implementation in yellow.
This is a lot of code




Call Graph for SDMMC Peripheral

libc and tasks
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And finally above that we can see standard libc functions
For example: fsync on the bottom left and open on the bottom right
The yellow tasks is the actual logger.

The great thing about this is that you don't need to instrument your code.
You can do this on any firmware without modifcations.
Very helpful for getting to know a code base.



Embedded Debug Tools: emdbg BSD

Modular Toolbox for Scripting GDB

e pip install emdbg

* Fully open-source: https://github.com/auterion/embedded-debug-tools

Instructions are on GitHub and API docs via pdoc emdbg

Specific for STM32/PX4/NuttX, but intentionally modular so you can hack it.

You are very welcome to contribute, I'm actively maintaining this project!

All tools in this talk are from emdbg!

reference to module: [emdbg.analyze.calltrace]

You can look at how this is implemented in detail in the open-source Embedded Debug Tools.

Python3 library, BSD licensed, fully open-source on GitHub with lots of documentation.

It's highly modular so you can reuse it, even though the higher level tools are STM32/PX4/NuttX specific
Actively maintained, feel free to contribute or just use it as a reference, you can also ask questions there.

The reference at the bottom right refers to the python module.
Ok, let's look at some more GDB tools.


https://github.com/auterion/embedded-debug-tools

aka "RTOS threads"

(gdb) px4 tasks

PID NAME
0 Idle Task
3 init
634 wg:uavcan
699 wqg:SPI3
718 wqg:I2C4
830 wg:nav_contr
840 wg:rate ctrl
842 wqg:INSO
847 commander
1557 logger
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Inspecting NuttX tasks
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[emdbg.debug.gdb#px4_tasks]

NuttX is a RTOS with preemptive threads, PX4 uses a lot of threads.
Here I've created our first GDB Python tool: px4_tasks

it lists all the threads with their PID, name, CPU and stack usage, and most importantly what it's waiting for.

Semaphores are the bain of my existance, therefore being able to see their state is great for my sanity.




Custom GDB User Commands ‘@é

NuttX not supported by GDB/JLink/OpenOCD

class PX4 Tasks (gdb.Command) :
def init (self):
super (). init ("px4 tasks", gdb.COMMAND USER)

def invoke(self, argument, from tty):
print (px4.all tasks as table(gdb))

1. Find task list: gdb.lookup global symbol ("g pendingtasks")
Directly read task state: tcb["name"] .string ()

Indirectly compute the rest: Search for stack watermark, find CPU time, ...

w0 DN

Task switching by writing registers: Clunky.
[emdbg.debug.gdb#px4_tasks]

So how does this work?

This is implemented as a custom GDB user command.

GDB can lookup symbols in various scopes.

NuttX uses a so called ready list of tasks that are runnable.

We find that in SRAM and then iterate over each task struct.

There are simple attributes of the struct that we can directly access

Others need some more code like a binary search to find the stack watermark, look at timers to figure out CPU time etc
So, complexity can be a scaled up or down



(gdb) px4 interrupts

Inspecting Interrupt State
NuttX intercepts NVIC to implement IRQs

< &

IRQ EPA P ADDR = FUNCTION ARGUMENT
-13 -1 0x80220c4 = arm hardfault
-5 e 0 0x802221c = arm svcall
-1 e 80 0x80llefc = stm32 timerisr
11 e 80 0x800936c = stm32 dmainterrupt 0x20020740 <g_dma>
12 e 80 0x800936c = stm32 dmainterrupt 0x20020758 <g dma+24>
27 80 0x816b0f8 = 1o timer handler0
31 e 80 0x816826a = stm32 i2c isr 0x20020b44 <stm32 i2cl priv>
37 e 80 0x8008dd4 = up_interrupt 0x200203a0 <g_usartlpriv>
39 80 0x8008dd4 = wup_ interrupt 0x20020570 <g_usart3priv>
Qe 80 0x81674f8 = <tm32 ox+i]1810 isr
[§9 e 80 0x800936c = stm32 dmainterrupt 0x20020848 <g dma+264>
65 ep 80 0x81300a4 = can2 irqg
105 e ¢l Uxclocro4 = stm3Z sdmmC_ 1nterrupt

[emdbg.debug.gdb#px4_interrupts]

Another example, NuttX implements its own dynamic interrupt dispatcher in assembly.
Therefore every interrupt handler is the same function, not very useful for debugging.

This small tool finds the NuttX dispatch table and renders it.
You can also see the priority (all the same, NuttX doesn't support nested interrupts)

and whether the interrupt is enabled, pending, or active.

Here the IRQ 59 DMA is active, and IRQ 65 is pending, so it'll be next.

Super useful to figure out what functions to put a breakpoint on.




Inspecting GPIO State

Reading peripherals directly

(gdb) px4 gpios

PIN CONFIG I AF NAME FUNCTION

A0 AN ADC1 INO SCALED VDD 3V3 SENSORS1
A3 IN _ USART2 RX USART2 RX TELEM3

AL AT'T‘#T—T A N QDT1 Q'K DT ] QK CENCSORT _TOM2OAND
A6 IN 8 SPI6 MISO SPI6 MISO EXTERNALL

A8  IN+PU ~ TIM1 CH1 FMU CH4

A9 INTDD — USE OIG IsS VBUS  VBUS SENSE

All ALT+VH B 0 USB OTG FS DM USB D N

Al2 ALTHVH - 0 __USR _OTG FS DP SR D P

A13 ALT+PU+VH 5 SwWDIO FMU_SWDIO

Al4 ALT+PD A 0 SWCLK FMU SWCLK

ATS 00T SP16 NCoZ EXTERNALT

[emdbg.debug.gdb#px4_gpios]

Ok, enough NuttX, let's look at some STM32 specific tools.

| often need to know the state the microcontroller pins, so this tool shows them to me.
You can see the pin name, the Configuration, the input and output state, the alternate function, and signal names and function.

For example, the pin A6 and A8 are inputs with a pullup, both currently high.

Pin A13 and A14 are the SWD connection, we can see that their are interally connected via the alternate function.

The data connection is also configured for Very High datarate (VH).




Inspecting GPIO State

Debugger can access anything that's on the bus!
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i
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Well, how does this work?
The debugger can not only access the internal SRAM, but also every other bus:
It first goes through the internal 64-bit bus matrix



CMD, CMDdir, CK, Ckin,
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2 chanpels.as AF

RTSTE

RX, TX, SCK
CTS, RTS as AF

RX, TX as AF
RX, TX as AF
RX, TX as AF

RX, TX as AF

MOSI, MISO, SCK, NSS /
'SDO, SDI, CK, WS, MCK, as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SCL, SDA, SMBAL as AF
SCL, SDA, SMBAL as AF
SCL, SDA, SMBAL as AF
MDC, MDIO
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CEC as AF
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LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

Ol

then goes through another 32-bit bus matrix before finally accessing the register file of the GPIO peripherals.




Inspecting GPIO State

Consulting the Reference Manual

Table 8. Register boundary addresses!!)

Boundary address Peripheral Bus Register map
0x58020800 - 0x58020BFF GPIOC Section 11.4: GPIO registers
0x58020400 - 0x580207FF GPIOB A(gs)“ Section 11.4: GPIO registers
0x58020000 - 0x580203FF GPIOA Section 11.4: GPIO registers

Bits 31:0 PUPDR[15:0][1:0]: Port x configuration 1/O piny (y = 15 to 0)
These bits are written by software to configure the I/O pull-up or pull-down
00: No pull-up, pull-down

01: Pull-up Bits 31:0 MODER[15:0][1:0]: Port x configuration 1/O piny (y = 15 to 0)
10: Pull-down These bits are written by software to configure the 1/0O mode.
11: Reserved 00: Input mode

01: General purpose output mode
10: Alternate function mode
11: Analog mode (reset state)

For this to work | need to know the exact address of the GPIO peripheral, which | can find in the STM32H7 reference manual.
| also need to interpret the bits inside the register, which | can also find in there.
| then wrote a short Python script that iterates over each pin and converts the bit fields to the table you just saw.

ok, but | cannot write a custom parser for every peripheral, wouldn't it be nice if we had a machine-readable register description?



Inspecting Any Peripheral V cmsis
using System View Description (SVD) files

* CMSIS-SVD files describe the registers in a standardized XML format.

* Intended for debuggers, IDEs, and code generators for language bindings.
* Available from vendors with varying completeness, resolution, and quality.

» STM32 SVD files are problematic, patches available from stm32-rs project.
* pengi/arm_gdb provides a GDB plugin to read registers on device via SVD.

* emdbg just wraps this tool and adds a difference viewer.

[emdbg.debug.gdb#px4_pshow]

Well... the System View Description files are exactly that.
A standardized XML format that describes the register maps, so | don't have to copy it out of the PDFs.

The STM32 SVD files are a little broken, there are manual patches available.
There is a great GDB plugin from pengi that does the heavy lifting for you, it loads the SVD file and tells the debug probe to read the right memory and converts this into a

structured form.

emdbg just wraps this tool for convenience.



(gdb) px4 pshow DMA2.SOCR

DMAZ2.SOCR = 0000010001010100
EN o i 0
DMEIE  .......cven.. 0.
TETE ... 1..
HTIE ... .00 0...
TCIE ..o 1....
PFCTRL .......... O.....
DIR ... 0l......

OO OORrRrRORrORFr OO

//
//
//
//
//
//
//
//
//
//
//
//
//

Inspecting Any Register AYSE
using System View Description (SVD) files

stream x configuration register
Stream enable / stream ready
Direct mode error interrupt enable
Transfer error interrupt enable
Half transfer interrupt enable
Transfer complete interrupt enable
Peripheral flow controller

Data transfer direction

Circular mode

Peripheral increment mode

Memory increment mode

Peripheral data size

Memory data size

[emdbg.debug.gdb#px4_pshow]

This is what it looks like

here we're looking at the DMA2 stream 0 configuration register.

You can see the raw register value and then below all the bitfields with the name and description

This is very helpful for a quickly checking the configuration of a peripheral without manually unfiddling the bits.

You still need to check the reference manual for the larger picture.




Visualizing Register Differences

using hardware watchpoints and SVD files

< CMsIs

Program received signal SIGTRAP, Trace/breakpoint trap.
(hand1e=0x20020800 <g_dma+192>, paddr=1073814656,

maddr=maddr@entry=537046208, ntransfers=ntransfers@entry=128, scr=10572832) at chip/stm32_dma.c:733

#1 0x0816d9a6 in (dev=0x20020ef4 <g_sdmmcdev.
#2 0x08172edc in artblock=@, buffer=0x2002a
#3 (inode=<optimized out>, buffer=0x2002acc@® <g_dma_|
#4 0x0801b518 in (fs=fs@entry=0x20002100, buf <0p
#5 0x0801b654 in s=f

#6 0x08019b4c in
#7 0x08019480 in
#8 0x080194de in
#9 0x08010ab0 in

er=0x200015a0, data=<optimize
e=source@entry=0x20002090 "/dev,
cefentry=0x20002090 "/dev/mm
v 0001760, argc=<optimized ou
#10 0x0800dc16 in (vtbl=vtbl@entry=0x20001760, argc
#11 0x0800e746 in (vtbl=vtbl@entry=0x20001760
#12 0x0800e816 in (vtbl=vtbl@e

#13 0x08011fb@ in (vtb 1

#14 0x0801201c in v
#15 0x08010b82 in

#16 0x0800d8e2 in

#17 0x08014e90 in

#18 0x0800c2de in

#19 0x00000000 in O

)1@entry=0x20001760) at
argc@entry=1, argv=argve
"gv=0x2007e238) at nsh_main

(entrypt=entrypt@entry=0x800dsb!
Q at task/task_start.c:130

try=0x20002100, writeable=wr

ntry=0x20001760, cmdline=c
ntry=0x20001760, cmd=cmd

733 regval = dmast_getreg(dmast, STM32_DMA_SFCR_OFFSET);

Differences for DMA2:

- DMAZ.S@CR = // stream x configuration register

- PL e @0 -0 / Priority level

- CHSEL 0000, ... -0 // Channel selection

+ DMAZ.SOCR = 0001011 // stream x configuration register

+ PL e Ql.....oiiinnnnnn -1 // Priority level

+ CHSEL 8 L 1 -b // Channel selection

(gdb) bt

#0 (hand1e=0x20020800 <g_dma+192>, paddr=1073814656, mac réentry=537046208, ntransfers=ntransfers@entry=128, scr=10572832) at chip/stm32_dma.c:733

2>, buf acc@ <g_dma_heap> "", buflen=512) at chip/stm32_sdmmc.c:3107

cc@ <g_dma_heap> "", priv=0x20001570) at mmcsd/mmcsd_sdio.c:1453
heap> "", starts N ors=1) at mmcsd/mmcsd_sdio.c:2281
timized out>, sectc try=0, nsectors=nsectors@entry=1) at fat/fs_fat32util.c:738

iteable
d out>, hc

entry=true) at fat/fs_fat32util.c:539
-=0x2007ebe8) at fat/fs_fat32.c:2168
/mmcsd@”, target 1try=0x200020b@ "/fs/microsd", f
csd@”, target=target@entry=0x200020b@ "/fs/microsd", file
t>, argv=0x2007ecc4) at nsh_mntcmds.c:211

ntry=5, argv=argv@entry=0x2007ecc4, redirfile
<optimized out>) at nsh_parse.c:2578
ine@entry=0x20001a04 "if") at nsh_parse.c:2662
d@entry=0x819d2cb "init", path=path@entry=0x817b876 "/etc/init.d/rcS") at nsh_script.c:128
nsh_script.c:177

entry=0x2007e238) at nsh_consolemain.c:83

.c:153

5 <nsh_main>, argc=<optimized out>, argv=<optimized out>) at sched/task_startup.c:151

entry=0x20001a10 "vfat"
entry=0x20001a10 "vfat", mo

target

mtyr

a redirfile@entry=0x0, oflags=oflags@entry=0) at nsh_parse.c

[emdbg.debug.gdb#px4_pwatch]

We can also use this in combination with hardware watchpoints.
The device itself watches a memory region for writes and then triggers a b

reakpoint.

For example here | can see what code actually writes to this Stream 0 register, and what the differences were.
You can also see the backtrace here, which shows that the SDCard driver from before is calling the DMA driver.




Coredumping V cmsis
using SVD files and CrashDebug

GDB reads all volatile memory and registers to dump them into a file.

ELF file provides non-volatile memory and debug symbols.

Can be done a runtime too, see adamgreen/CrashCatcher for HardFaults.

adamgreen/CrashDebug presents memory as a GDB Server to GDB.

Great for sharing full device state with remote engineers for pair debugging!

Fil
Coredump 4|—e> CrashDebug

Memory + Peripherals GDB Server

[emdbg.debug.gdb#px4_coredump]

Finally, the last GDB tool I'll show you is coredumping support.
Not natively implemented, so we need to do it ourselves:

It's relatively simple: read out all volatile memory like SRAM and peripherals and store them in a file.

The non-volatile memory comes from the ELF file.

The SVD files are very useful so we do not have to copy 4GBs of data. Only takes a few seconds.

Then write a GDB server that pretends to be connected to a device, but actually serves any data from the coredump file.
The CrashDebug utility from Adam Green does exactly that and it works really well. | can recommend it.

You can archive devices in their buggy state and share it with other engineers or try again later.

All of there tools are running, while the CPU is halted. What if you cannot halt the CPU?



You need to profile.

Profiling via Logging

aka printf debugging

Output logging messages over UART or logged to non-volatile memory.

Use USB-Serial adapter to see log and then post process it.

Ubiquitous and very effective, lots of existing libraries for it.

» Very invasive, you need to add non-trivial amounts of code for logging.

Still extremely valuable tool for narrowing down the issue area.

Often very slow compared to event rate, way too slow for real-time.

The simplest profiling method is logging, usually over Serial link.

It's very low-cost, very effective and everyone uses it.

And it is of course a necessary tool to get an idea of what went wrong.
But it's waaaaay to slow for our processor (480MHz).

A lot of events.




Real-time Profiling
via Real-Time Transfer (SEGGER RTT)

I-TCM D-TCM D-TCM

64KB 64KB 64KB

» Log to on-device ring buffer via API. i
AHBP|
. JTRST, JTDI.—l é(r)nr‘t'ef—':lll; AXI/AHB12 (200MHz)
* Debug probe async reads ring buffer. <=, o LA o ]
' — FLASH
: N e
» Timestamps and serialization in software! ° ‘“’J (e e

+ SEGGER SystemView
to render the data. -y

[§ ETH_RX 2]
. . [ ETH_X [
. Proprleta(y V\{lth Mo W . i :
commercial license. P Task | 1 |O 1 IF[
|

03.792 617 071

[L_Is]

IP_WebServer [ 1

4 Webserver Child p B Tl

Webserver Child

* No NuttX support! 1de

We need a high-bandwidth connection:

Simple idea: log to ring buffer in SRAM and let the debug probe do the transfer.

This is the idea behind SEGGERs SystemView, which provides a library to serialize RTOS events and timestamp it in software.
threads, scheduling, semaphores, interrupts.

BUT: It's proprietary and costs money and it has no native NuttX support.

And, still actually a fairly high overhead.



Cortex-M

Real-time Profiling
ITM/DWT via SWO pin

= Oxdeadbeef;

SWO
ﬁ

Orbetto

Protobuf

i

» Log 8/16/32-bit values to 32 ITM channels, DWT traces exceptions:
ITM->PORT [3]

* Hardware manages serialization, timestamps, and queues with priorities.
» Output ~2MB/s UART stream over dedicated SWO pin via STlinkv3.
» Orbcode is an open-source project to work with Cortex-M debug data.

» emdbg/ext/orbetto is a custom tool to convert ITM/DWT to ftrace packets.

Perfetto

[ext/orbetto]

Wouldn't it be great if we could instead let the hardware do the serialization and timestamping?

Well, look no further than the built-in Instrumentation Trace Macrocell (ITM) and Data Watchpoint and Trace (DWT) peripherals.

They provide 32 channels that you can write 8,16 or 32-bit values into and also logs exception entry and exit.

The whole thing is implemented in hardware, so you only need to add a single line statement to write to a ITM channel.

Serial Wire Output is basically a very fast UART. STLinkv3 can read up to 2MB/s via this link.

However, this is a compact binary format that we need to parse, which is what the Orbcode project provides.
With this parser we can demultiplex the bit stream and convert it to standard ftrace packets.

This tool is written in C++ and is called orbetto because.




Trace Visualization R
via Perfetto U

00:00:00 000005 000005
017864039 172100 000 172200 000

T
Cpuo X |
AN 30 | NN N o U Ro- (R CC TR ] ooy | | I | IS [CRes | [
.
wquavean 621 vav..
Wq:SPI3 684 | Running | _Running_| (R} LR |
wa:SPI3 684 | bmi0g8_accel bmi0ss_gyro
wg:SPI2 703 <] [ Runn_}
wq:SPI2703 iom42688p
wg:SPI1 729 (] [Run_]
WaSPI1 729 T
Wq12C4 747 & ]
wq12C4 747 bmp3ss
Wq12C2 847
wq12C2 847
wa:nav_and_controllers 949 |__Running _| (R | LR LRunn. RER. |
wa:nav_and_controllers 949 | sensors | A
wgrrate_ctrl 951 [____Ruming__|
warate_ctrl 951 om.|
wa:INS0 954 ___Running _| LRun. R Ruming R Ruming____| R Running |
WINS0 954 [ oo ] a2 Sevoeim ]
commander 956
wg:ttyS5 977
wqittyS5 977
mavlink_if0 1040
mavlink_rov_if0 1042
gps 1245
mavlink_if1 1352
mavlink_rov_if1 1353
maviink if2 1467 (& _Rumning_| T —

Try it online yourself: github.com/auterion/embedded-debug-tools => ext/orbetto

|
‘wairate_ctrl [95...

And this is then visualized by perfetto, which is actually meant to visualize Android and Linux traces.

At the top, you can see the CPU is multiplexing all the different threads, but you can also see the interrupts just below.
Note that is happening all within the same millisecond, each tick is 100ps.

NuttX schedules a lot, because it is an RTOS!

On the left you can the tasks with name and PID. PX4 has a lot of different threads.

We have a lot of work queues for all the sensors, which you can see when the workqueue item is called but often the thread actually gets interrupted a lot.

This view is incredibly educational to see how an RTOS actually works.


http://github.com/auterion/embedded-debug-tools

Trace Visualization
via Perfetto Ul
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[ext/orbetto]

But it actually becomes more interesting if we zoom out, we can see some more patterns.

Here every tick is 1ms.




Spotting Timing Issues e
via Perfetto Ul
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And even further: here every tick is 100ms.

And suddenly we see a hickup: The 12C1 task is irregular, because there was a power glitch and the sensors had to be reinitialized.

This kind of visual debugging with you eyes is incredibly fast to spot timing issues.
It also makes you look like a wizard if you just whip this out and show other people how PX4 works.

But SWO is still limited by bandwidth, so ARM provides you with even more hardware:



Real-time Tracing
ITM/DWT/ETM via TRACE pin

e ETM can trace all instructions.

» High-bandwidth 4-bit output interface
<125MB/s requires FPGA and USB3

8000408:

» J-Trace is ~2000€, ORBTrace is ~200£€. 000
* ORBTrace mini is open-source! Go hack it!

* What do you do with so much data?
Instrumentation for fuzzing: pAFL

* I'm looking for an intern to work on this at
Auterion with me. Are you interested?

Parallel tracing gives you a 4-bit wide data bus up to 1GBit/s in theory.

In addition to all the previous functionality, there is also a compressed instruction trace, that allows you to reconstruct the program flow off device.
This requires custom FPGA hardware with a fast USB connection.

The J-Trace costs a lot of money. | got one for work, and it's not as well documented as | had hoped.
The Orbtrace is open-source, so it's much more hackable, and its 10x less expensive too.

There's a very helpful community around it, smart people work on this.

Go hack with it!

What do you do with this giant amount of data?
One research paper | saw used the branching information in the trace to run american fuzzy lop on the device and find lots of bugs in STM32 drivers.

It would be very helpful to find bugs in an Autopilot before they happen in flight!

I'm right now looking for an intern to work with me on this at Auterion!



Real-time Profiling
Comparison
Profiling Aspect L_oggir!g ) Ring Buffer IT_M/DWT ITIV!/DWT/ETM
via Serial via Debug Probe via SWO via TRACE
Serialization ASCII via printf 8-bit values 8/16/32-bit values 8/16/32-bit values
Multiplexing Manual Multiple queues 32 ITM channels 32 ITM channels
Timestamp Manual Manual DWT cycle counter DWT cycle counter
. Any exception DWT + ETM
M I
Exceptions anua Manual entry/exit via DWT Instructions
Buffers Depends. on >1kB ring buffer Small hardware buffer | 4kB hardware buffer
UART driver
~11kB/s P ; : : :
Speed (115200 baud) <4MB/s if using J-Link <3MB/s via SWO <100MB/s via 4-bit
Overhead Very large Large Small Small
External Support Cheap USB-Serial SWD debug probe Very fast USB-Serial Orbtrace or J-Trace

SWO is the sweet spot regarding cost of debug probe and feature set.
Orbtrace mini is pretty good for high-bandwith Tracing <400Mbit/s.



Conclusion
and Future Work

Use GDB more to debug ARM Cortex-M! Script GDB with the Python API!

Use the built-in debug hardware of ARM Cortex-M devices for profiling!

Orbcode is an amazing project with a great community.

Orbtrace is a fantastic deal for a trace probe! BUT: needs contributions.

Please try out emdbg and give me some feedback.

Thanks for you attention! Questions?

So this is the end of the line, this is all the hardware and tooling | currently use for debugging.

In conclusion: Debug all the things!
Use more GDB, use more debug hardware!

Test and contribute to the Orbcode project, play around with the Orbtrace.
They are looking for competent embedded people to liberate the debug tools from commercial vendors!

Oh and also try out my embedded debug tools or maybe look at them for inspiration.

Thank you and do you have questions?



Debugging Microcontrollers

A debugging session is active. Quit anyway? (y or n) y

Niklas Hauser likes microcontrollers.

Homepage: salkinium.com
Fediverse: @salkinium@chaos.social
Code: github.com/salkinium

emdbg: github.com/auterion/embedded-debug-tools

Orbcode: orbcode.org

My name is Niklas and | like microcontrollers.


https://salkinium.com
https://chaos.social/@salkinium
https://github.com/salkinium
https://github.com/auterion/embedded-debug-tools
https://orbcode.org

