Introduction to
ARMv8-M and TrustZone-M

Niklas Hauser

emBO++ 2018

According to my parents | study something with computers.

Software Engineering

Electronic Engineering

But | also build autonomous robots in my spare time.

ARM mbed OS: architected platform security

mbed OS API

mbed 0S

; Device Security

mbed

Cloud

Ciient
bed OS Communication Securi

" Upae Trosed Lbrary |

Hardware Interfaces

ARM Cortex-M CPU TrustZone for ARMvBM

©ARM 2016 ARM
https://github.com/ARMmbed/uvisor/raw/docs/uVisorSecurity-TechCon2016.pdf

2.5y ago, | got hired by ARM to work on mbed OS Security, specifically uVisor.
| spent almost 2y on the lowest levels of the ARMv7-M and ARMv8-M architectures.
I've seen ALL the dirt of Cortex-M and I still (mostly) love it.

Then | quit to work on the largest research model railway in Germany.
YOLO.

Hello. My name is Niklas.And | would like
to share with you the most amazing book!

Arm'v8-M Architecture
Reference Manual

arm

Copyright © 20152017 Arm Limited or its affiliates. All rights reserved
Arm DDI 0553A.g (ID121417)

Music from Book of Mormon.

Bringing TrustZone to the Cortex-M family

Maximum High
performance, performance
control and ARMTRUSTZONE
DSP
Cortex-M33
Mainstream Flexbilicy, Performance
Performance control and :
control and efficiency
efficiency DSP DSP with
TrustZone
Cortex-MO+ Cortex-M23
. TrustZone in Lowest
Llowest cost, ngh;sf energy smallest area, power & area
ow power efficiency lowest power

ARMv7-M
ARMv8-M
ARMv6-M
©ARM2016 ARM

https://www2 keil.com/docs/default-source/default-document-library/using_trustzone_on_arm_cortex-m23_and_cortex-m33.pdf

On the left are the current Cortex-Ms that you probably al know.
MO/MO+ for low power and cost

M3/M4 for performance

M7 for ludacris performance

And then in late 2015 ARM announced the ARMv8-M architecture.
Cortex-M23 was released on June 23™ 2016, aka the day of the Brexit vote!

Maybe M43 in future?

P ; %"f “’ao
°’~? Cortex-M33 + LTE

i/;} -

First ARMv8-M implementation shipped by Nordic: nRF91
Cellular Modem + CryptoCell + Cortex-M33

ZZ Fraunhofer Q

AAAAA

STM32F0

Debug » erface
Exploit Demo

ARM only provides the CPU implementation, it DOES NOT provide any memory
implementations.

So vendors have to integrate the CPU with Flash and RAM themselves.
= Flash readout protection mechanisms are not unified
= Recently a race condition in the debug interface allowed circumventing STM32

flash readout protection entirely!

Marc talked about this in his talk

INCLUDE HOME SERVICES CAREERS BOUT
SECURITY S)
Archives Thursday, November 5, 2015
> Firmware dumping technique for an ARM Cortex-MO So(

NRF51 had too permissive debug permissions, allowed reading and modifying the
CPU registers even when Flash readout protection was enabled.
With a bit of luck, entire flash could be dumped.

ece °° a® P - °

Dmitry.GR Myseif Projects Thoughts

Part 0 - TLDR

This article explains how | figured out how Cypress's jury-rigged *supervisor* mode in the PSoC4 family works, dumped the secret
unreadable SROM, exploited it, and found a way to unlock extra flash in the PSoC4 as well as how you can develop scary rootkits for
touchpads and touchscreens that use Cypress chips. | provide the code to do this yourself as well as as much guidance as | possibly can,
for now. Along the way | explain how this was all done and what steps it took. This article encompasses a work of about a month.

Part 1, where we meet our opponent and look deeply into its eyes...

The Cortex-M mi jlable now is the CYBC4013SXI-400 from the PSoC4000 family by Cypress. It is the

by far. It is avai in an 8-pin claims to have 8K of flash, 2K of ram, run at 16MHz, and sells for $0.61 apiece. What's

not to like. | decided to get some to play with, and got on with reading the manuals (1 2 3). Now, when | see something like *The user has

no access to read or modify the SROM code ,* | i i perk up. Not huh? Well, what's in there? *When the device is reset,

the initial boot code for iguring the device is out of super y read-only memory®. Oh? Curious. Anything else? *System

calls are executed out of SROM in the mode of . Allright, | am i This is how my adventure with Cypress

PSoC4 began. When claims ing to be i ible, this i iately i ing. This post is my attempt to retell

this story and what | learned of it. It starts as quite inaccurate (as | knew little) and gets more accurate as | learn more about the insides of
this chip.

First, let me give you a short overview of Cortex-MO (the CPU in PSoC4) and ARMvE-M (the architecture of the Cortex-M0). You may
skip this paragraph if you're well familiar with the topic. The CPU is a very simple one. It has 16 32-bit registers and executes Thumb code
(16-bit opcodes). There are a few 32-bit long opcodes, but mostly they are for making long jumps and function calls. Unaligned accesses
are not supported. Exception handling abilities are minimal: almost any exception causes a HardFault, and there is not always enough
information saved to fix the cause and restart. Cortex-MO is meant for simple tasks. The processor has a concept of *Exception Number."
This is a method to prioritize what can interrupt what. Normal IRQs are configurable, and a few CPU-wide exceptions are not and have

i Any of a lower number can interrupt a handler running of a higher number. That is, for example,
an IRQ with priority 2 can interrupt normal execution; it itself may be interrupted by an IRQ of priority 1, and that may read undefined
memory and take a HardFault (priority -1). The HardFault handler itself may be interrupted by an NMI (priority -2). The CPU will ignore
exceptions of a higher priority number while a handler of a lower number runs. This causes an i i What happens if you
access undefined memory in an NMI handler? The priority number is lower than that of HardFault, so CPU cannot take the fault. It also

cannot access the mw‘ In this case CPU enters |Dd(s state, which is a w state where it miﬂw anemﬁ and fails to

PSoC4 uses a hardware+software solultion to restrict access to certain memories in
software! Ships 16kB RAM, enables only 8kB via supervisor task running in privileged
mode.

Broken to unlock full RAM and more.

11

Non Trusted Trusted

Handler Non secure Secure
Mode Handler Handler
l Mode Mode
Non secure

Thread

Mod Thread

Mode

ARMv7-M ARMv8-M

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

What do you do to make things more secure? SLAP A GREEN LOCK ON IN. like web
browsers.

Green lock means Trusted. BAM, problem solved, thanks, goodbye.

Important to place the untrusted side on the LEFT and make it RED.
Like some kind of data communists, that want to share all the data fairly.

12

Classic embedded Secure embedded

design design
ARMv7- ARMv7- Untrusted Trusted
]] |
? ? ?
3 Firmware s = libraries
c [c
)))

!

Trusted

Trusted
resource

RTOS
manager

and libs

resource
manager
and libs

RTOS

Firmware

Privileged
Privileged

Privileged

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

A bit more of a technical slide:

There are two mode “dimentions”:

1. (un-) privileged as a Safety domain
2. (un-) trusted as a Security domain

Typically on v7-M your RTOS runs privileged and programs the MPU to provide
protection against _accidental wrong memory accesses.

PSoC4 tried something in the middle, also using the MPU to restrict firmware
securely.

ARMv8-M make this more explicit:
The trusted side is secured by explicit hardware support.

13

TrustZone for ARMv8-A TrustZone for ARMv8-M

Non-secure states Secure states Non-secure states Secure states

Non-secure Secure
app 1 appl/libs

Rich O, Secure
e.g. Linux app/libs

Non-secure

oS Secure OS

Secure monitor TrustZone for ARMv8-M

Secure transitions handled by the processor
to maintain embedded class latency

©ARM 2016 ARM

https://www2 keil.com/docs/default-source/default-document-library/using_trustzone_on_arm_cortex-m23_and_cortex-m33.pdf

TrustZone is a marketing term. TrustZone-A is not technically similar to TrustZone-
M

TrustZone-M is much more direct: Uses a different, hardware-accelerated mechanism
for mode switching than on Cortex-A.

Technical term is: Cortex-M Security Extensions: CMSE; -cmse compiler flag
We call the trusted side, “secure side”, untrusted “non-secure”.

14

TrustZone Non-secure

Hardware Software
Secure storage Secure boot

Crypto

accelerators Crypeo library

Legal APIs Applications

TRNG Secure firmware

Flash programming Firmware update

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

The basic idea is to provide secure services on the trusted domain:

- Hey, secure side, please encrypt this memory blob, but don’t expose my keys.
- Hey, secure side, please verify this firmware update memory blob and apply it
securely.

Vendors may ship a device with a TrustZone implementation! Debug access is then
limited only to the non-secure side!

15

Non-secure software

@ Non-secure

- startup code

® it

— User
Application |

|~ Call back I

@ |mipcew

"Software Development in ARMv8-M Architecture” by Joseph Yiu

Execution starts on the secure side.

Configure the system

perhaps perform bootloader tasks,

Initialize the TrustZone subsystems

Delegate execution to the non-secure side

Non-secure side may delegate execution back to secure side,
OR secure-side may get secure interrupts

Secure side can also call back to non-secure side

State is saved on the secure stack.

ONOURWNPRE

16

Secure program code Non-Secure program code

#include <arm_cmse.h> extern int foo1(int a);
int __attribute__((cmse_nonsecure_entry)) extern int foo2(int b);
fooi(int a)
{ /I Secure function callable from Non-secure int main(void)
int __attribute__((cmse_nonsecure_entry)) foo1(x);
foo2(int b)
{ /I Secure function callable from Non-secure foo2(y);
} }
Compile Compile
Branch
veneer . X .
enee Link E port Link
address Library

(linker script)

Secure program image Non-secure program
e eer i __ [mage__
SG |y foot: " | 1
| BW foot - i ! nain |
456 I | BXNSLR | : |
| B.W foo2 : », foo2: | | BL foot |
o | | 1
| | .

: | : BXNS LR : : BL foc2 !
bl I !
4 3 I !

You are building TWO executables now, with TWO linkerscripts!
Secure APlIs are a binary interface, but may wrapped in a static library for easier
access.

Secure and non-secure have different views on the memory!

Example memory map System control and debug

| |
Secure view Non-secure view Secure view Non-secure view
| |

- |
| osemrgor [P v |
System control and debug
0xE0000000
Off-chip peripherals
0xA0000000

G ||
0xEO00F000

e [

Non-secure RAM
0x20000000

OxFFFFFFFF
0xF0000000

0xF0000000

0x40000000

Secure SCB Non-secure SCB

Secure NVIC Non-secure NVIC
Secure SysTick Non-secure SysTick

ITM/DWTI/FPB
i 0xE0000000

Non-secure flash
0x00000000]

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

Hardware does memory aliasing for you depending on CPU mode.

Non-secure side may not be able to access all flash or ram or peripherals, depending

on what the secure side configured.

There are duplicated CPU peripherals:

- 2 Memory Protection Units

- 2 System Control Blocks

- 2 NVICs: Two interrupt vector tables!

- 2 SysTicks: Interrupts are routed to their respective sides.

DETAILS ARE VERY IMPLEMENTATION DEFINED!

18

Address

SAU/IDAU

Secure MPU Non-secure MPU

Address Secure,
Non-secure,
Non-secure Callable

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

There are two completely independent MPUs: one for each side.

This is cool, because your RTOS can now run completely independently in the non-
secure side.

It has it’s own MPU (for safety), it’s own SysTick, some fault handler interrupts.

BUT: We need a new peripheral to attribute which memory is secure/non-secure:
The SAU: Security Attribution Unit is queried first, and memory access compared with
CPU mode.

(Sau means pig in German *giggle*)

19

Processor
Address

Optional IDAU

(System specific

attribution unit,
outside processor)

Compare

Secure/Non-secure

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

SAU is configurable at runtime, virtually identical use as the MPU.
Use this to split up your memories, assign peripherals to sides, etc.

IDAU: (Implementation-Defined Attribution Unit) is provided non-mutable
background attribution map implemented by the vendors in hardware for their
specific chip implementation.

It predefines secure and non-secure aliases, to save you from programming that into
the SAU yourself.

If SAU regions overlap or the IDAU comparison fails => Always attributes memory as
secure.

20

Address Type Security

OxFFFFFFFF - -- .
- Various

GxF0000000 (CPU controlled)

0xE0000000 - -- -—
0xD0000000 - - -
0xC0000000 -- -= -
0xB0000000 - - .-
0xA0000000 - - -
0x90000000 - RAM (WB) -- - -
0x80000000 - -- - -
0x70000000 - RAM (WT) —-- -~
0x60000000 - - - -
0x50000000 - -- -
0x40000000 - -- - -
0x30000000 - - -
0x20000000 - - - -
0x 10000000 - . =
0x00000000 - - - -

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

The secure side can only access memory attributed as secure.
The non-secure side can only access memory attributed as non-secure.

So the aliasing helps with the attribution, by splitting the memory map in half. Bit 28
is used by ARM as an example, so 256MB chunks are aliased. IMPLEMENTATION
DEFINED.

,
FLASH memory SRAM memory

s A
uVisor protected 0S/App .stack

reconfigures MPU

static link/boot-
time vector table

. . J

g 8o
g8
0S/App .heap e § Peripheral Blocks
c|2 Memory Range
=Y
Sla
OS/App .bss Private Peripherals
N\ o o [_\
Active X Cay Inactive
0S/App .data Box 2 Process Box 3 Process | |
v’ x
| — ()
uVisor protected
Ava AV
0s/App - -
code and .data ,
initialization *
(izl) .
|
X * Thread 9
3 (eaar) [=)
3 ¢ p
E Thread 8 X v Thread 11
g Other RO-sections ~ s \\ o f
g Public Peripherals
=

-
-

ARM
https://github.com/ARMmbed/uvisor/raw/docs/uVisorSecurity-TechCon2016.pdf

Example configuration in uVisor: We implemented mutually distrustful domains, so
“"multiple non-secure environments”.
We reprogram the SAU/MPU on environment switch (also runs on ARMv7-M).

Secure | Non-secure

Function call/IRQ/return
I

Handler mode Handler mode

IRQ/return IRQ/return

+

Thread mode Thread mode

<
-

Function call/IRQ/return
|

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

So how do we actually call a secure API?
IT’S SIMPLE REALLY, JUST LEARN ABOUT THESE 12 TRANSITION TYPES. LOL.

But how do you call into the Secure side, if you cannot access this memory at all?

23

SAU region 2
Non-secure SAU_RLAR.NSC=0
Non-secure

Memory not covered by a region
Secure

SAU region |
SAU_RLAR.NSC=1
Secure and Non-secure Callable

Secure and Non-
Secure Callable

SAU region |

Non-secure SAU_RLAR.NSC=|
Secure and Non-secure Callable

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

You introduce a THIRD memory attribute: Secure and Non-Secure Callable.

This memory is secure, so you cannot read it (aka. data fetch), but the non-secure
side can call into it, (aka. instruction fetch).

24

NSC Region Secure Region(s)

o g veneer |— +»| Entry function o

3 © N o

8 aCJ veneer |—i—p] Entry function 8

5 > 5 Internal

> : = .

S veneer »| Entry function 3 functions
g2 5

> g veneer »| Entry function

Secure data

Stack Heap Global data

"Software Development in ARMv8-M Architecture” by Joseph Yiu

You need to be able to control the entry point into the secure side, otherwise you can
reconstruct some secure side instructions by observing CPU side effects of its
execution.

So you actually call a veneer in the NSC region which simply forwards to the secure
side

25

Non-secure N Secure

. Func_A_entry
BL Func_A_entry —— SG; Indicate valid entry

B Func_A > Func A
. : Function
BXNS LR
J
Non-secure Secur
Func_B Return address push to L.
; Function = Secure stack, LR set tc BLXNS RO RO=address of Func_B with LSB =0 (NS)
FNC_RETURN
-
L. Branch to FNC_RETURN triggers
BX LR unstacking of return address from

Secure stack

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

On call to a NSC region from NS side, the CPU will fetch ONE 16-bit instruction from
the NSC side and if it’s not a SecureGateway instruction, it will SecureFault. (Function
Call is not in sudoers file, THIS INCIDENT WILL BE REPORTED).

The CPU mode transition happens on the SG instruction and then you can just call
into the secure code.

To go back, branch to NS with link register.

(SG instructions are NOP when executed by the secure side.)
SG instruction encoding may also occur accidentally in normal code or data, The NSC

region may ONLY contain veneer code!

When the secure side calls the NS side, the link register contains FNC_RETURN which
obfuscuates the caller address to the NS side!

26

BLXNS call
to Non-secure function

| BL to SG call
to entry function

BXNS return
from entry function I

BX to FNC_RETURN return
from Non-secure function

https://static.docs.arm.com/100690/0100/armv8_m_architecture_trustzone_technology_100690_0100_00_en.pdf

These are the “lightweight” transitions, they are similar in cost to a function call
rather than a synchronous interrupt (aka re-privileging via SVC).

I’'m not going into the details of cross-side interrupt handling, but there is extended

support for pushing secure-side registers for mode changes in tail-chaining, securing
FPUs registers.

Worst case stack frame can get up to 212B large!

27

Simplified software security with
TrustZone for ARMv8-M

. Secure regions

Legacy bus Legacy bus - Non-secure regions
master master
TrustZone (Non-Secure) (Secure)
aware bus
master

Processor
(ARMv8-M) Security Security

wrapper wrapper

AMBA 5 AHBS interconnect

Secure Memory I Memory Peripheral AHBS to APB
access only Protection Protection q - Protection bridge
Controller Controller Controller

Secure Boot System

loader Security APB
Controller

Peripheral
Protection
Controller
Peripherals

(Page based (Watermark level APB
partitioning) based Peripherals
partitioning)
30 ©ARM2017 ARM

"High-end security features for low-end microcontrollers” from meriac.com

ARMV8-M also extends security attributes into the Busses with the new AHB5
specification.
This means DMA transfers is also bound to security attribution.

28

Thank you for listening!

Niklas Hauser: @salkinium (salkinium.com)
Milosch Meriac: @FoolsDelight (meriac.com)

uVisor: github.com/ARMmbed/uVisor
ARM PSA: Platform Security Architecture

uVisor is part of the PSA, which is the official architecture from ARM for consolidating
security for TrustZone on Cortex-A and Cortex-M.

29

64-Kbyte ARM GP GP MAC 807G || coqer || Chrom ART
CCM data RAM Cortex-M4 DMA1 DMA2 | [ethernet HS Accelerator(DMA2D)
- T
2

MPU %

e B e B |

DMA2D

h | oma_fhem1

b |} oma_fhem2
I
EgM
o
[2
—
LCO- T M

| accee |
3
3
3

SRAM1
160 Kbyte

SRAM2
32 Kbyte

SRAM3
128 Kbyte

L= 1rEm

AHB1
- APB2
FMC external

MemCtl

Bus matrix-S MS33862v1

Why is MPU not enough to protect on ARMv7-M? Because MPU only protects
accesses of the Cortex-M CPU!!!!

ANY other bus master (like all DMAs) have complete and uncontrolled access to
the whole memory map.

