
1



According to my parents I study something with computers.

2



But I also build autonomous robots in my spare time.

3



2.5y ago, I got hired by ARM to work on mbed OS Security, specifically uVisor.
I spent almost 2y on the lowest levels of the ARMv7-M and ARMv8-M architectures.
I’ve seen ALL the dirt of Cortex-M and I still (mostly) love it.

4



Then I quit to work on the largest research model railway in Germany.
YOLO.

5



Music from Book of Mormon.

6



On the left are the current Cortex-Ms that you probably al know.
M0/M0+ for low power and cost
M3/M4 for performance
M7 for ludacris performance

And then in late 2015 ARM announced the ARMv8-M architecture.
Cortex-M23 was released on June 23rd 2016, aka the day of the Brexit vote!

Maybe M43 in future?

7



First ARMv8-M implementation shipped by Nordic: nRF91
Cellular Modem + CryptoCell + Cortex-M33

8



ARM only provides the CPU implementation, it DOES NOT provide any memory
implementations.
So vendors have to integrate the CPU with Flash and RAM themselves.

Þ Flash readout protection mechanisms are not unified
Þ Recently a race condition in the debug interface allowed circumventing STM32 

flash readout protection entirely!

Marc talked about this in his talk

9



NRF51 had too permissive debug permissions, allowed reading and modifying the 
CPU registers even when Flash readout protection was enabled.
With a bit of luck, entire flash could be dumped.

10



PSoC4 uses a hardware+software solultion to restrict access to certain memories in 
software! Ships 16kB RAM, enables only 8kB via supervisor task running in privileged 
mode.
Broken to unlock full RAM and more.

11



What do you do to make things more secure? SLAP A GREEN LOCK ON IN. like web 
browsers.
Green lock means Trusted. BAM, problem solved, thanks, goodbye.

Important to place the untrusted side on the LEFT and make it RED.
Like some kind of data communists, that want to share all the data fairly.

12



A bit more of a technical slide:
There are two mode “dimentions”: 
1. (un-) privileged as a Safety domain
2. (un-) trusted as a Security domain

Typically on v7-M your RTOS runs privileged and programs the MPU to provide 
protection against _accidental_ wrong memory accesses.
PSoC4 tried something in the middle, also using the MPU to restrict firmware 
securely.

ARMv8-M make this more explicit:
The trusted side is secured by explicit hardware support.

13



TrustZone is a marketing term. TrustZone-A is not technically similar to TrustZone-
M!!!
TrustZone-M is much more direct: Uses a different, hardware-accelerated mechanism 
for mode switching than on Cortex-A.

Technical term is: Cortex-M Security Extensions: CMSE; -cmse compiler flag
We call the trusted side, “secure side”, untrusted “non-secure”.

14



The basic idea is to provide secure services on the trusted domain:

- Hey, secure side, please encrypt this memory blob, but don’t expose my keys.
- Hey, secure side, please verify this firmware update memory blob and apply it 

securely.

Vendors may ship a device with a TrustZone implementation! Debug access is then 
limited only to the non-secure side!

15



Execution starts on the secure side.
1. Configure the system
2. perhaps perform bootloader tasks, 
3. Initialize the TrustZone subsystems
4. Delegate execution to the non-secure side
5. Non-secure side may delegate execution back to secure side, 
6. OR secure-side may get secure interrupts
7. Secure side can also call back to non-secure side
8. State is saved on the secure stack.

16



You are building TWO executables now, with TWO linkerscripts!
Secure APIs are a binary interface, but may wrapped in a static library for easier 
access.

Secure and non-secure have different views on the memory!

17



Hardware does memory aliasing for you depending on CPU mode.
Non-secure side may not be able to access all flash or ram or peripherals, depending 
on what the secure side configured.

There are duplicated CPU peripherals:
- 2 Memory Protection Units
- 2 System Control Blocks
- 2 NVICs: Two interrupt vector tables!
- 2 SysTicks: Interrupts are routed to their respective sides.

DETAILS ARE VERY IMPLEMENTATION DEFINED!

18



There are two completely independent MPUs: one for each side.
This is cool, because your RTOS can now run completely independently in the non-
secure side.
It has it’s own MPU (for safety), it’s own SysTick, some fault handler interrupts.

BUT: We need a new peripheral to attribute which memory is secure/non-secure:
The SAU: Security Attribution Unit is queried first, and memory access compared with 
CPU mode.
(Sau means pig in German *giggle*)

19



SAU is configurable at runtime, virtually identical use as the MPU.
Use this to split up your memories, assign peripherals to sides, etc.

IDAU: (Implementation-Defined Attribution Unit) is provided non-mutable 
background attribution map implemented by the vendors in hardware for their 
specific chip implementation.
It predefines secure and non-secure aliases, to save you from programming that into 
the SAU yourself.

If SAU regions overlap or the IDAU comparison fails => Always attributes memory as
secure.

20



The secure side can only access memory attributed as secure.
The non-secure side can only access memory attributed as non-secure.

So the aliasing helps with the attribution, by splitting the memory map in half. Bit 28 
is used by ARM as an example, so 256MB chunks are aliased. IMPLEMENTATION 
DEFINED.

21



Example configuration in uVisor: We implemented mutually distrustful domains, so 
”multiple non-secure environments”.
We reprogram the SAU/MPU on environment switch (also runs on ARMv7-M).

22



So how do we actually call a secure API?
IT’S SIMPLE REALLY, JUST LEARN ABOUT THESE 12 TRANSITION TYPES. LOL.

But how do you call into the Secure side, if you cannot access this memory at all?

23



You introduce a THIRD memory attribute: Secure and Non-Secure Callable.

This memory is secure, so you cannot read it (aka. data fetch), but the non-secure 
side can call into it, (aka. instruction fetch).

24



You need to be able to control the entry point into the secure side, otherwise you can 
reconstruct some secure side instructions by observing CPU side effects of its 
execution.
So you actually call a veneer in the NSC region which simply forwards to the secure 
side

25



On call to a NSC region from NS side, the CPU will fetch ONE 16-bit instruction from 
the NSC side and if it’s not a SecureGateway instruction, it will SecureFault. (Function 
Call is not in sudoers file, THIS INCIDENT WILL BE REPORTED).
The CPU mode transition happens on the SG instruction and then you can just call 
into the secure code.
To go back, branch to NS with link register.

(SG instructions are NOP when executed by the secure side.)
SG instruction encoding may also occur accidentally in normal code or data, The NSC 
region may ONLY contain veneer code!

When the secure side calls the NS side, the link register contains FNC_RETURN which 
obfuscuates the caller address to the NS side!

26



These are the “lightweight” transitions, they are similar in cost to a function call 
rather than a synchronous interrupt (aka re-privileging via SVC).

I’m not going into the details of cross-side interrupt handling, but there is extended 
support for pushing secure-side registers for mode changes in tail-chaining, securing 
FPUs registers.
Worst case stack frame can get up to 212B large!

27



ARMv8-M also extends security attributes into the Busses with the new AHB5 
specification.
This means DMA transfers is also bound to security attribution.

28



uVisor is part of the PSA, which is the official architecture from ARM for consolidating 
security for TrustZone on Cortex-A and Cortex-M.

29



Why is MPU not enough to protect on ARMv7-M? Because MPU only protects
accesses of the Cortex-M CPU!!!!
*ANY* other bus master (like all DMAs) have complete and uncontrolled access to
the whole memory map.

30


