
1



I study something with computers.

2



But I also build autonomous robots in my spare time.

We use a lot of different microcontrollers, so we needed to port our HAL a lot, and 
then automated this process a little.
We call our HAL modm, and it supports 1000 AVR and STM32 targets.

3



You’re all already using a code generator, it’s called the C preprocessor.
It works pre:y well FOR LIMITED USE-CASES.

Difficult to get non-language related data into the CPP, and only supports *very 
restricKve* operaKons on it.

4



Let’s replace the CPP with the Jinja template engine called from Python.
The immediate difference isn’t that much, but you can access any Python object in 
Jinja, so we’ve replace the macro TARGET_FAMILY with an OBJECT that gives us 
access to the target idenLfier in a structured way.

5



For example you can pass a list of interrupt vectors into your template and format 
your interrupt vector table using this information.

6



Once doesn’t simply generate a HAL for 1000 AVR and STM32 targets.

This wouldn’t be manageable as a huge Python script, so we broke it down into 
smaller modules and thus lbuild was born.

7



Thus lbuild helps us build our library, it’s a library builder, hence lbuild.

modm uses the data in modm-devices to generate a custom library and build system 
for your target.

8



So how does it look like?

lbuild operates on repositories and modules, here we can see the discovered modm
repository.
You can very prominently see the modm:target op=on, which is REQUIRED to see the 
repository.
Below are some predefined library configura=ons that you can inherit for well-known 
development boards.

9



Let’s discover the modm:target option: it’s an enumeration option with a huge list of 
targets. These are all the microcontrollers that modm can generate a HAL for.

I’m going to choose the STM32F469 target

10



When I run discover again with this repository option, we can then finally see the 
modules.

Here you see a selection of the microcontrollers peripherals, as hierarchical modules.
We have very fine-grained modules, and split up each instance of each peripheral into 
its own module.

This reduces the amount of code that falls out of modm at the end, which can lead to 
*very small* binaries.

Note the allocator option in the platform:cortex-m module. It allows us to change the 
entire heap allocator with an option.

11



This is how you specify the options and modules you want to use.
It’s a XML config file, it’s pretty straight-forward.

12



How does a module work?

Add a bunch of python files to your repository with three func:ons: init, prepare, 
build.

Here the module name and module descrip:on is set.

13



This then allows lbuild to build a module tree and display the module description.

Here on the command line.

14



But we can also use this information to place the module description on our website.

15



And also automatically generate Doxygen groups with this description, so everything 
is always in sync.

16



You can then also search these descrip1ons which is useful when you have a lot of 
modules.

17



The prepare step allows you to add dependencies on other modules.
Here the :platform:cortex-m module depends on the heap interface.

And you can add module options: here choose between three different allocators.

And finally, the modules can access the repository target, here we’re only enabling 
this module if the target has a Cortex-M core.

18



The user will then make their decision which modules to build, and with which 
options.

The build step then finally allows you to generate code: here we generate the vector 
table and the actual heap implementation.

This is nice because you can choose a completely different template FILE, so you 
don’t have to cram everything into one template.

19



After you build, this is what the vector table looks like for our F469 target.

The names and positions come from modm-devices, not from lbuild.

20



And here are all the files generated for the specific pins of your target.

Again this data comes from modm-devices, not from lbuild.

21



lbuild is available via Pip. It’s a Python 3.5 tool.

Just pip install lbuild.

Then open a bunch of issues on GitHub.

22



If you want to play around with lbuild:

Clone the modm repository (recursively), go into *any* example, and type lbuild
discover.

23



Want to know more about modm-devices, have a look at my blog.

24


