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Thank you for the introduction.

Thanks to the conference organizers for the opportunity to talk here.

Who?
Hello, my name is Niklas and I like microcontrollers
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My name is Niklas.

- I started studying Computer Science some time ago.

- I began building autonomous robots in 2010.

- We created a C++ library which is known as modm.io, a C++23 library 

generator that supports 3700+ Cortex-M devices.

- I then started at ARM working on Cortex-M sandboxing, before returning to 

the university to study for my masters degree.

- There, I worked on a digital modular signalling system for railways.

- I finished my masters degree and now work at Auterion debugging the open-

source PX4 Autopilot for commercial drones.


http://roboterclub.rwth-aachen.de
http://modm.io
http://salkinium.com/elva


Why?
PX4 Autopilot runs on NuttX

• Full RTOS with peripheral drivers, extensive 
filesystem and communication protocols.


• Many external sensors and components.


• Often subtle bugs that only manifest 
heuristically under the right conditions.


• Complex code base: 2MB binary, 6 months 
to get up to speed while building tooling.


• Very fast STM32H7 (480MHz) can easily 
overwhelm debug logging options.

Skynode

In particular, I'm debugging the Skynode, which contains a Linux system and a 
flight management unit, which runs on the PX4 Autopilot software.

- PX4 is based on the NuttX RTOS which is complex and has some subtle bugs 

now and then.

- My job is to debug and improve PX4 and NuttX.

- Difficult because large code base and fast processor, which limits printf 

debugging.

- I want to share some of the tools I wrote over the last few months to help me 

trace PX4.

What?
Microcontrollers are Embedded Systems
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• CPU connected via internal busses to memory and peripherals.


• Programmable, highly flexible real-time capabilities and data processing.


• Typically runs barebone or real-time OS.

This talk is about microcontrollers, specifically with the ARM Cortex-M 
architecture. Microcontrollers contain a microprocessor, here a Cortex-M7 in 
light green on the left, connected via a bus system in gray to non-volatile 
memories, like Flash, and volatile memories like SRAM (yellow), as well as a 
number of special purpose peripherals. Peripherals can be internal, like the 
Random Number Generator (RNG) down here, or external, like the Ethernet 
MAC up there which connects over Media Intependent-Interface (MII) to an 
external PHY via the microcontroller pins. The CPU itself can be debugged 
using the Serial Wire Debug connection here on the left. Tracing uses the SWO 
and TRACE pins.



Remote Debugging vs Tracing
One does not simply trace Cortex-M

GDB

TCP
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GDB Server

USB

(PyOCD, JLink)

GDB/MI

IDE

SWD

Debug Probe

(STLink, J-Link)

TRACE

Trace Tooling
USB SWO

Trace Probe

Debugging microcontrollers requires some extra steps.

- You need to connect the Serial Wire Debug (SWD) signals to a hardware 

debug probe

- For example a J-Link or a STLink

- The debug probe then communicates over USB to the driver software

- Typically this is OpenOCD, PyOCD or JLinkGDBServer

- Which implements the GDB server protocol

- GDB connects to the GDB Server via TCP

- You can already debug now using the GDB command line

- Most IDEs wrap the debug functionality

- Communicate with GDB using the Machine Interface

- MI is an ASCII protocol for communicating with GDB as a User Interface


For tracing, you connect to the output-only SWO and TRACE pins. However, 
after that no standardized infrastructure exists. So let's have a look at tracing 
approaches.

Profiling via Logging
aka printf debugging

• Output logging messages over UART or logged to non-volatile memory.


• Use USB-Serial adapter to see log and then post process it.


• Ubiquitous and very effective, lots of existing libraries for it.


• Very invasive, you need to add non-trivial amounts of code for logging.


• Still extremely valuable tool for narrowing down the issue area.


• Often very slow compared to event rate, way too slow for real-time.

The simplest profiling method is logging, usually over Serial link. It's very low-
cost, very effective and everyone uses it. And it is of course a necessary tool to 
get an idea of what went wrong. But it's waaaaay to slow for our processor 
(480MHz). A lot of events.



Real-Time Profiling
via NuttX task trace system

• Built-in trace system via hooks.


• Scheduler, system calls, interrupts.


• Requires functioning NuttX system.


• On-device with significant overhead!


• TraceCompass 
renders the data.


• Open-Source and 
well supported.

nuttx.apache.org/docs/latest/guides/tasktraceuser.html

NuttX has a built-in task trace system. It logs events to RAM and then to a file. 
But it renders very nicely in TraceCompass. It also runs on-devices, so it 
modifies timings and uses CPU time and program space.
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Real-Time Profiling
via SystemView RTT

• Log to on-device ring buffer via API.


• Debug probe async reads ring buffer.


• Timestamps and serialization in software!


• Limited to debug 
probe bandwidth.


• Proprietary GUI 
renders the data.


• Commercial license, 
hacking verboten.

segger.com/products/development-tools/systemview/

So, can we externalize the profiling cost? Simple idea: log to ring buffer in 
SRAM and let the debug probe do the transfer. This is the idea behind 
SEGGERs SystemView, which provides a library to serialize RTOS events and 
timestamp it in software. threads, scheduling, semaphores, interrupts. BUT: It's 
proprietary and costs money and is not extensible.

• ITM multiplexes 32 channels of 8/16/32-bit values 
ITM->PORT[1] = 0x03A1;

Real-Time Profiling
via ITM on Cortex-M3/M4/M7/M33

7 6 5 4 3 2 1 0
A[4:0] Header , SS is 0 b 100

Payload byte 0 , 0 xA 1
Payload byte 2 , 0 x 03

10
10000101
11000000

7 6 5 4 3 2 1 0
0 Header00

Payload byte 0
10 0 1 1

ExceptionNumber[7:0]
(0) (0) FN [ 1:0 ] (0) (0) (0) Payload byte 1

ExceptionNumber[8]

7 6 5 4 3 2 1 0
0 Header1

Payload byte 0
Payload byte 1
Payload byte 2
Payload byte 3

10 1
PC[7:0]
PC[15:8]

PC[23:17]
PC[31:24]

0 0 1

• DWT can sample the program counter and trace interrupts


• Hardware manages serialization, timestamps, and queues with priorities.

7 6 5 4 3 2 1 0
1 Header0TC[1:0]

Payload byte 0
Payload byte 1, if required

00 0
C
C
C
0

1
TS[6:0]
TS[13:7]

TS[20:14]
TS[27:21]

Payload byte 2, if required
Payload byte 3, if required

ARMv7-m ARM

Wouldn't it be great if we could instead let the hardware do the serialization and 
timestamping? Well, this is exactly what the built-in ITM peripheral does. They 
provide 32 channels that you can write 8,16 or 32-bit values into and also logs 
exception entry and exit. The whole thing is implemented in hardware, so you 
only need to add a single line statement to write to a ITM channel. CPU 
overhead only for waiting for space in the buffer, uses much less program 
space. The DWT peripheral can also output interrupts entry/exit and program 
counter samples. The overhead is only one header byte, and for this you get 
reliable framing and prioritization for free in hardware.


https://nuttx.apache.org/docs/latest/guides/tasktraceuser.html
https://www.segger.com/products/development-tools/systemview/


• ETM "compresses" instruction trace by only outputting branch information 
                                                                       (plus interrupts + cycle counts)

Real-Time Tracing
Instruction Trace with ETMv4 on Cortex-M7

ETMv4.6 Specification 

Then finally there is the ETM peripheral which allows for instruction trace. This is 
by far the most complicated trace peripheral, with *many* configuration options. 
The basic idea is relatively simple: only output which branch was taken, the 
other instructions in between are known and can be "traced" off-device. In 
practice it's a bit more complicated when dealing with conditional execution, 
interrupts, and cycle counts.

Real-Time Tracing
via ETMv4 + ITM on Cortex-M7

• Instruction tracing: ~0.4 bits per cycle. 
STM32H7 running at 480MHz = ~200Mb/s.


• Timing information: Cortex-M7 is a dual-issue CPU 
with caches, instructions take a variable number of 
cycles! ETMv4 issues differential cycle count 
between "branches", but not for single instructions.


• Data tracing: not implemented on STM32. You must 
manually add data sources via ITM: +50Mb/s.


• Total bandwidth requirements: <250Mb/s => USB2.


• You must decode ETM + ITM streams on the host! 
Protocol documentation is available online for free.

orbcode.org

The required bandwidth is about 0.3-0.4 bits per cycle, so for a 480MHz 
STM32H7, we're looking at about 200Mb/s. Cortex-M7 is a beast: can process 
two instructions at the same time, has branch prediction, aggressive caching. 
Instruction timing is variable, thus ETM only gives use cycle counts between 
branch information, not for individual instructions. Data tracing is not 
implemented on STM32. So we must manually instrument any data we want 
with the ITM. Together we're looking at a 250Mb/s data stream, which fits 
comfortably into USB2. Reconstructing the program flow looks like on the right. 
This is done with the orbcode libraries.

http://orbcode.org
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So where does the data go? This is the debug and trace subsystem of the 
STM32H7. You can see the CPU code in the middle connected to the DWT, 
ITM, and ETM peripherals. You can connect your debugger on the left via SWD 
and then access the internals via the DAP. You can redirect the ITM output to an 
internal 4kB FIFO and then read this out via the SWD debugger. This is basically 
a hardware accelerated version of the RTT protocol. You can also redirect the 
ITM output to the SWO pin, which is a very fast UART. The super cheap 
STLinkv3 can trace this up to 2.4MB/s. ORBTrace mini can do 6MB/s, some 
(expensive) J-Links/J-Traces even higher. To output the ETM, you can only 
output it over the 4-bit parallel trace port with up to ~1Gb/s bandwidth 
(<133MB/s). For this you need a trace tool, here an open-source version called 
the ORBTrace mini, which is 10x cheaper than the J-Trace. Sadly there is no 
way to redirect the internal 4kB ETF buffer to SWO.

Real-time Profiling and Tracing
Comparison

Profiling Aspect Logging 
via Serial

Ring Buffer 
via Debug Probe

ITM/DWT 
via SWO

ITM/DWT/ETM 
via TRACE

Serialization ASCII via printf 8-bit values 8/16/32-bit values 8/16/32-bit values

Multiplexing Manual Multiple queues 32 ITM channels + 
DWT sources

32 ITM channels + 
DWT/ETM sources

Timestamp Manual Software Hardware cycle 
counter from ITM

Hardware cycle 
counter from ITM/ETM

Exceptions Not usually Software Any exception

entry/exit via DWT

Any exception

entry/exit via ETM

Instructions No No No YES

Buffers Depends on

UART driver ≥1kB ring buffer 10B (!) hardware buffer 4kB hardware buffer

Speed ~11kB/s (115200 Baud) ≤4MB/s if using J-Link ≤6MB/s via SWO ≤133MB/s via TRACE
Overhead Very large Large Small Very small

External Support Cheap USB-Serial Fast SWD debug probe Very fast USB-Serial ORBTrace or J-Trace

Using more specialized hardware for profiling the better, what a surprise!1!! The 
10B (yes!) hardware buffer for SWO requires busy-waiting the CPU when writing 
to the ITM in bursts.



State of the Tooling: YOLO
Tracing the STM32H7 with the ORBTrace mini at 960Mb/s

STM32H7 ORBTrace mini

Here the Skynode FMU is connected to the Orbtrace to transfer around 960Mb/
s of debug information, which is great.

- On the left is the STM32H7 on the Auterion Skynode.

- One right right is the ORBTrace mini

- And in the middle is the 4-bit parallel TRACE connection. Not even length 
matched, still works fine.

Tracing Toolchain
Transforming ETM + ITM via Orbuculum to Perfetto

Port Usage
1 Thread Start
2 Thread Resume
3 Thread Runnable

DWT Interrupts
ITM Timestamps

Elements
Interrupts
Addresses

Cycle Counts
Conditionals

Events

ELF File

ITM

DWT

ETM

Orbetto

Orbuculum

libdwarf

Capstone

~50Mb/s

~200Mb/s
Disassembler

Symbols

~110GB/h

Source FTrace Packet
1 task_rename
2 sched_switch
3 sched_waking

DWT irq_handler
ITM set_timestamp
ETM callstack

~100Mb/s

Perfetto Protobuf

Callstacks

~45GB/h

perfetto.dev

Ok, now what? We take the ITM, DWT, and ETM data streams and the data in 
the ELF file and convert them to a perfetto trace file. We convert the instruction 
trace to only function call stacks, which reduces the complexity significantly. 
Also reduces the file size significantly. Perfetto is based on FTrace, so you need 
to put the relevant data from your scheduler into the ITM to get threading 
support. ETM only gives you instructions, NOT data, so you will know that the 
scheduler has switched threads, but not WHICH thread! So ETM only makes 
sense in combination with ITM.


Trace Visualization
via Perfetto UI

Try it online yourself: github.com/auterion/embedded-debug-tools => ext/orbetto

And this is then visualized by perfetto, which is actually meant to visualize 
Android and Linux traces.

- At the top, you can see the CPU is multiplexing all the different threads, but 
you can also see the interrupts just below. Note that is happening all within the 
same millisecond, each tick is 100µs. NuttX schedules a lot, because it is an 
RTOS!

- On the left you can the tasks with name and PID. PX4 has a lot of different 
threads.

- We have a lot of work queues for all the sensors, which you can see when the 

https://perfetto.dev
https://github.com/Auterion/embedded-debug-tools/tree/main/ext/orbetto


workqueue item is called but often the thread actually gets interrupted a lot.

This view is incredibly educational to see how an RTOS actually works.

Tracking Heap Usage
by logging every single malloc and free

For example, every malloc/free call, which helps you understand the heap 
usage. Here you can see a single malloc call with the requested size and the 
returned pointer and allocated size including overhead. By adding mallocs and 
subtracting frees, you can compute the total heap usage over time. I didn't find 
a good UI for this, but you could even analyze heap fragmentation using this 
information. Also create a histogram of allocation sizes for optimizing a binning 
block allocator for your application. Incredibly useful and it also makes you look 
like a wizard if you just whip this out and show other people how PX4/NuttX 
works.

You can trace anything
Semaphores, Workqueues and DMA channels

You can really track *anything* over time. Here we're tracing DMA channels and 
semaphores. You can see the SPI3 workqueue at the top. It starts two DMA 
transfers and then waits on a semaphore.



Spotting Timing Issues
via Perfetto UI

If we zoom out we can also see patterns. Here there was a brown out because 
we put too many sensors on the same power rail. And the sensors reinitialized. 
Would be nice if we could detect such issues automatically.

Querying Traces
via PerfettoSQL

• Efficient querying via a SQLite-derived syntax via a custom processor


• See: Tracing Summit 2022 - Analysing Perfetto Android traces at every scale


• Very useful for integration testing! How well do all the parts work together? 

• PX4 is a complex RTOS so some timing bugs can be very tricky to catch!

perfetto.dev/docs/analysis/trace-processor

So perfetto also has a SQL interface to query your traces. This is very fast. 
There is a fantastic talk about this in more detail which I delegate to. The 
documentation is also fairly complete. We can write SQL queries to detect 
issues with our RTOS, which only show up when putting all the parts together. 
So this targets integration testing rather than unit testing.

Trace-Based Metrics
Reducing the complexity of the data

• Goal: catch regressions as early as possible, as often as possible.

perfetto.dev/docs/analysis/metrics
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Sensor Reading Regularity

Comm Link Throughputs

Scheduling Latency vs. Timeouts
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MAP
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Pull Request Update #3
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REDUCE

We want to have a typical filter-map-reduce pipeline that tests every PR or 
branch. Onto every trace we maps a set of queries:

- regular sensor readings is very important for a stable control loop.

- We need high communication link throughputs via DMA.

- Sometimes we have to wait on other threads, would be nice to know what the 

wait time distribution is like.

- Catching potential deadlocks, where semaphores are to blame.

- Some functions needs to be called in pairs (enable, disable). Is that 

balanced?


https://www.youtube.com/watch?v=eWF3h0VW1mk
https://perfetto.dev/docs/analysis/trace-processor
https://perfetto.dev/docs/analysis/metrics


And then the reduce step renders these metrics into a graph.

Query All Traces
with the Batch Trace Processer

• Pro Tip: You can also run new queries on old traces!

perfetto.dev/docs/design-docs/batch-trace-processor

Perfetto gives you a batch processor for the map-reduce pipeline. Why not do 
this processing on device? Because you need to know before hand what 
metrics you want. ETM catches *all* instructions, so you can go back in time 
and query old traces and get new insights. BUT: only works with instruction 
traces, not on ITM data, because you need to add the ITM tracing.

Future: Better Query Language?
We have even more data sources!

rtlola.cispa.de/
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Ok, so we have a lot more data sources than just traces. We also log on device 
and then evaluate this afterwards. Bandwidth is limited, thus we only log the 
important things. All of them have different tooling, the PerfettoSQL only works 
for the tracing part but what about the rest? Looking into research, the RTLola 
specification language may be a solution. The hope is to specify the queries 
once and then compile them to all our analysis tools. One specification to rule 
them all…

https://perfetto.dev/docs/design-docs/batch-trace-processor
https://rtlola.cispa.de/


Future: RTLola Specification
Specify once and validate everything!

rtlola.cispa.de/

…and in darkness bind them! Or something like that. The idea is to interpret the 
off-device data streams against the specification, or alternatively compile the 
specification into a on-device monitor. Perhaps in future we can use RTLola to 
generate checks for our formats.


Conclusion

• Complicated: Embedded Software + Data Science + Quality Engineering.


• ARM Cortex-M built-in debug and trace hardware is very powerful! Use it!


• Perfetto is a great foundation but optimized for Android/Linux, not Cortex-M.


• Regardless: Incredible promise for solving hard problems head on!


• ORBTrace mini is a fantastic deal for a trace probe!


• Please try out emdbg and give me some feedback.

This is fairly complicated. Perfetto is great and will become even better. 
ORBTrace mini is really good value and works fine even for STM32H7.


Embedded Debug Tools: emdbg
a modular toolbox for scripting GDB + tracing Cortex-M

• Fully open-source: https://github.com/auterion/embedded-debug-tools


• Also contains all the trace tools, but not currently feature complete.


• Instructions are on GitHub and API docs available via   pdoc emdbg.


• Specific for PX4+NuttX+STM32, but intentionally modular so you can hack it.


• You are very welcome to contribute, I'm actively maintaining this project!


The trace tools are experimental!

Trace tools can be found on GitHub including examples. Not complete yet, 
we're still fighting a lot of bugs. There are also a much more mature GDB 
Python plugins, which I've given three separate talks on. We are actively 
developing the trace tools right now, hopefully much more complete by end of 
year.

https://rtlola.cispa.de/
https://github.com/auterion/embedded-debug-tools


Analyzing Cortex-M Firmware
with the Perfetto Trace Processor

Niklas Hauser: salkinium.com


Auterion: auterion.com


Orbcode: orbcode.org


RTLola: rtlola.cispa.de/


emdbg: github.com/auterion/embedded-debug-tools


Thanks for your attention!

Thank you and do you have questions?

https://salkinium.com
https://auterion.com
https://orbcode.org
https://rtlola.cispa.de/
https://github.com/auterion/embedded-debug-tools

