
Niklas Hauser
Senior Embedded Software Engineer

Analyzing Cortex-M Firmware
with the Perfetto Trace Processor

Thank you for the introduction.

Thanks to the conference organizers for the opportunity to talk here.

Who?
Hello, my name is Niklas and I like microcontrollers

roboterclub.rwth-aachen.de

'10

modm.io

'13

salkinium.com/elva

'18

'15

uVisorPX4 Autopilot

'23

My name is Niklas.

- I started studying Computer Science some time ago.

- I began building autonomous robots in 2010.

- We created a C++ library which is known as modm.io, a C++23 library

generator that supports 3700+ Cortex-M devices.

- I then started at ARM working on Cortex-M sandboxing, before returning to

the university to study for my masters degree.

- There, I worked on a digital modular signalling system for railways.

- I finished my masters degree and now work at Auterion debugging the open-

source PX4 Autopilot for commercial drones.

http://roboterclub.rwth-aachen.de
http://modm.io
http://salkinium.com/elva

Why?
PX4 Autopilot runs on NuttX

• Full RTOS with peripheral drivers, extensive
filesystem and communication protocols.

• Many external sensors and components.

• Often subtle bugs that only manifest
heuristically under the right conditions.

• Complex code base: 2MB binary, 6 months
to get up to speed while building tooling.

• Very fast STM32H7 (480MHz) can easily
overwhelm debug logging options.

Skynode

In particular, I'm debugging the Skynode, which contains a Linux system and a
flight management unit, which runs on the PX4 Autopilot software.

- PX4 is based on the NuttX RTOS which is complex and has some subtle bugs

now and then.

- My job is to debug and improve PX4 and NuttX.

- Difficult because large code base and fast processor, which limits printf

debugging.

- I want to share some of the tools I wrote over the last few months to help me

trace PX4.

What?
Microcontrollers are Embedded Systems

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0

 M
H

z
(m

a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4
-b

it
A

X
I
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2

 (
2

0
0

M
H

z)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4

 (
2

0
0

M
H

z)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4

 (
2

0
0

M
H

z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
(m

a
x)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0
 K

B
 S

R
A

M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)IWDG

Temperature
sensor

HASH

3DES/AES DS12556

• CPU connected via internal busses to memory and peripherals.

• Programmable, highly flexible real-time capabilities and data processing.

• Typically runs barebone or real-time OS.

This talk is about microcontrollers, specifically with the ARM Cortex-M
architecture. Microcontrollers contain a microprocessor, here a Cortex-M7 in
light green on the left, connected via a bus system in gray to non-volatile
memories, like Flash, and volatile memories like SRAM (yellow), as well as a
number of special purpose peripherals. Peripherals can be internal, like the
Random Number Generator (RNG) down here, or external, like the Ethernet
MAC up there which connects over Media Intependent-Interface (MII) to an
external PHY via the microcontroller pins. The CPU itself can be debugged
using the Serial Wire Debug connection here on the left. Tracing uses the SWO
and TRACE pins.

Remote Debugging vs Tracing
One does not simply trace Cortex-M

GDB

TCP

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0
 M

H
z

(m
a
x
)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it
 A

X
I

B
U

S
-M

A
T

R
IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2
 (

2
0

0
M

H
z)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4
 (

2
0

0
M

H
z)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4
 (

2
0
0
M

H
z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0
 M

H
z

(m
a
x
)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0
 M

H
z

(m
a
x)

A
P

B
4

 1

0
0
 M

H
z

(m
a
x)

A
P

B
4

 1

0
0
 M

H
z

(m
a

x)IWDG

Temperature
sensor

HASH

3DES/AES

ARM Cortex-M7

GDB Server

USB

(PyOCD, JLink)

GDB/MI

IDE

SWD

Debug Probe

(STLink, J-Link)

TRACE

Trace Tooling
USB SWO

Trace Probe

Debugging microcontrollers requires some extra steps.

- You need to connect the Serial Wire Debug (SWD) signals to a hardware

debug probe

- For example a J-Link or a STLink

- The debug probe then communicates over USB to the driver software

- Typically this is OpenOCD, PyOCD or JLinkGDBServer

- Which implements the GDB server protocol

- GDB connects to the GDB Server via TCP

- You can already debug now using the GDB command line

- Most IDEs wrap the debug functionality

- Communicate with GDB using the Machine Interface

- MI is an ASCII protocol for communicating with GDB as a User Interface

For tracing, you connect to the output-only SWO and TRACE pins. However,
after that no standardized infrastructure exists. So let's have a look at tracing
approaches.

Profiling via Logging
aka printf debugging

• Output logging messages over UART or logged to non-volatile memory.

• Use USB-Serial adapter to see log and then post process it.

• Ubiquitous and very effective, lots of existing libraries for it.

• Very invasive, you need to add non-trivial amounts of code for logging.

• Still extremely valuable tool for narrowing down the issue area.

• Often very slow compared to event rate, way too slow for real-time.

The simplest profiling method is logging, usually over Serial link. It's very low-
cost, very effective and everyone uses it. And it is of course a necessary tool to
get an idea of what went wrong. But it's waaaaay to slow for our processor
(480MHz). A lot of events.

Real-Time Profiling
via NuttX task trace system

• Built-in trace system via hooks.

• Scheduler, system calls, interrupts.

• Requires functioning NuttX system.

• On-device with significant overhead!

• TraceCompass 
renders the data.

• Open-Source and 
well supported.

nuttx.apache.org/docs/latest/guides/tasktraceuser.html

NuttX has a built-in task trace system. It logs events to RAM and then to a file.
But it renders very nicely in TraceCompass. It also runs on-devices, so it
modifies timings and uses CPU time and program space.

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0

 M
H

z
(m

a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it

A
X

I
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2

 (
2

0
0

M
H

z)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4

 (
2

0
0

M
H

z)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4

 (
2

0
0

M
H

z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
(m

a
x)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)

A
P

B
4

 1

0
0

 M
H

z
(m

a
x)IWDG

Temperature
sensor

HASH

3DES/AES

Real-Time Profiling
via SystemView RTT

• Log to on-device ring buffer via API.

• Debug probe async reads ring buffer.

• Timestamps and serialization in software!

• Limited to debug 
probe bandwidth.

• Proprietary GUI 
renders the data.

• Commercial license, 
hacking verboten.

segger.com/products/development-tools/systemview/

So, can we externalize the profiling cost? Simple idea: log to ring buffer in
SRAM and let the debug probe do the transfer. This is the idea behind
SEGGERs SystemView, which provides a library to serialize RTOS events and
timestamp it in software. threads, scheduling, semaphores, interrupts. BUT: It's
proprietary and costs money and is not extensible.

• ITM multiplexes 32 channels of 8/16/32-bit values 
ITM->PORT[1] = 0x03A1;

Real-Time Profiling
via ITM on Cortex-M3/M4/M7/M33

7 6 5 4 3 2 1 0
A[4:0] Header , SS is 0 b 100

Payload byte 0 , 0 xA 1
Payload byte 2 , 0 x 03

10
10000101
11000000

7 6 5 4 3 2 1 0
0 Header00

Payload byte 0
10 0 1 1

ExceptionNumber[7:0]
(0) (0) FN [1:0] (0) (0) (0) Payload byte 1

ExceptionNumber[8]

7 6 5 4 3 2 1 0
0 Header1

Payload byte 0
Payload byte 1
Payload byte 2
Payload byte 3

10 1
PC[7:0]
PC[15:8]

PC[23:17]
PC[31:24]

0 0 1

• DWT can sample the program counter and trace interrupts

• Hardware manages serialization, timestamps, and queues with priorities.

7 6 5 4 3 2 1 0
1 Header0TC[1:0]

Payload byte 0
Payload byte 1, if required

00 0
C
C
C
0

1
TS[6:0]
TS[13:7]

TS[20:14]
TS[27:21]

Payload byte 2, if required
Payload byte 3, if required

ARMv7-m ARM

Wouldn't it be great if we could instead let the hardware do the serialization and
timestamping? Well, this is exactly what the built-in ITM peripheral does. They
provide 32 channels that you can write 8,16 or 32-bit values into and also logs
exception entry and exit. The whole thing is implemented in hardware, so you
only need to add a single line statement to write to a ITM channel. CPU
overhead only for waiting for space in the buffer, uses much less program
space. The DWT peripheral can also output interrupts entry/exit and program
counter samples. The overhead is only one header byte, and for this you get
reliable framing and prioritization for free in hardware.

https://nuttx.apache.org/docs/latest/guides/tasktraceuser.html
https://www.segger.com/products/development-tools/systemview/

• ETM "compresses" instruction trace by only outputting branch information 
 (plus interrupts + cycle counts)

Real-Time Tracing
Instruction Trace with ETMv4 on Cortex-M7

ETMv4.6 Specification

Then finally there is the ETM peripheral which allows for instruction trace. This is
by far the most complicated trace peripheral, with *many* configuration options.
The basic idea is relatively simple: only output which branch was taken, the
other instructions in between are known and can be "traced" off-device. In
practice it's a bit more complicated when dealing with conditional execution,
interrupts, and cycle counts.

Real-Time Tracing
via ETMv4 + ITM on Cortex-M7

• Instruction tracing: ~0.4 bits per cycle. 
STM32H7 running at 480MHz = ~200Mb/s.

• Timing information: Cortex-M7 is a dual-issue CPU
with caches, instructions take a variable number of
cycles! ETMv4 issues differential cycle count
between "branches", but not for single instructions.

• Data tracing: not implemented on STM32. You must
manually add data sources via ITM: +50Mb/s.

• Total bandwidth requirements: <250Mb/s => USB2.

• You must decode ETM + ITM streams on the host! 
Protocol documentation is available online for free.

orbcode.org

The required bandwidth is about 0.3-0.4 bits per cycle, so for a 480MHz
STM32H7, we're looking at about 200Mb/s. Cortex-M7 is a beast: can process
two instructions at the same time, has branch prediction, aggressive caching.
Instruction timing is variable, thus ETM only gives use cycle counts between
branch information, not for individual instructions. Data tracing is not
implemented on STM32. So we must manually instrument any data we want
with the ITM. Together we're looking at a 250Mb/s data stream, which fits
comfortably into USB2. Reconstructing the program flow looks like on the right.
This is done with the orbcode libraries.

http://orbcode.org

SWD

RM0433

SWO

USB2

TR
AC

E

So where does the data go? This is the debug and trace subsystem of the
STM32H7. You can see the CPU code in the middle connected to the DWT,
ITM, and ETM peripherals. You can connect your debugger on the left via SWD
and then access the internals via the DAP. You can redirect the ITM output to an
internal 4kB FIFO and then read this out via the SWD debugger. This is basically
a hardware accelerated version of the RTT protocol. You can also redirect the
ITM output to the SWO pin, which is a very fast UART. The super cheap
STLinkv3 can trace this up to 2.4MB/s. ORBTrace mini can do 6MB/s, some
(expensive) J-Links/J-Traces even higher. To output the ETM, you can only
output it over the 4-bit parallel trace port with up to ~1Gb/s bandwidth
(<133MB/s). For this you need a trace tool, here an open-source version called
the ORBTrace mini, which is 10x cheaper than the J-Trace. Sadly there is no
way to redirect the internal 4kB ETF buffer to SWO.

Real-time Profiling and Tracing
Comparison

Profiling Aspect Logging
via Serial

Ring Buffer
via Debug Probe

ITM/DWT
via SWO

ITM/DWT/ETM
via TRACE

Serialization ASCII via printf 8-bit values 8/16/32-bit values 8/16/32-bit values

Multiplexing Manual Multiple queues 32 ITM channels +
DWT sources

32 ITM channels +
DWT/ETM sources

Timestamp Manual Software Hardware cycle
counter from ITM

Hardware cycle
counter from ITM/ETM

Exceptions Not usually Software Any exception

entry/exit via DWT

Any exception

entry/exit via ETM

Instructions No No No YES

Buffers Depends on

UART driver ≥1kB ring buffer 10B (!) hardware buffer 4kB hardware buffer

Speed ~11kB/s (115200 Baud) ≤4MB/s if using J-Link ≤6MB/s via SWO ≤133MB/s via TRACE
Overhead Very large Large Small Very small

External Support Cheap USB-Serial Fast SWD debug probe Very fast USB-Serial ORBTrace or J-Trace

Using more specialized hardware for profiling the better, what a surprise!1!! The
10B (yes!) hardware buffer for SWO requires busy-waiting the CPU when writing
to the ITM in bursts.

State of the Tooling: YOLO
Tracing the STM32H7 with the ORBTrace mini at 960Mb/s

STM32H7 ORBTrace mini

Here the Skynode FMU is connected to the Orbtrace to transfer around 960Mb/
s of debug information, which is great.

- On the left is the STM32H7 on the Auterion Skynode.

- One right right is the ORBTrace mini

- And in the middle is the 4-bit parallel TRACE connection. Not even length
matched, still works fine.

Tracing Toolchain
Transforming ETM + ITM via Orbuculum to Perfetto

Port Usage
1 Thread Start
2 Thread Resume
3 Thread Runnable

DWT Interrupts
ITM Timestamps

Elements
Interrupts
Addresses

Cycle Counts
Conditionals

Events

ELF File

ITM

DWT

ETM

Orbetto

Orbuculum

libdwarf

Capstone

~50Mb/s

~200Mb/s
Disassembler

Symbols

~110GB/h

Source FTrace Packet
1 task_rename
2 sched_switch
3 sched_waking

DWT irq_handler
ITM set_timestamp
ETM callstack

~100Mb/s

Perfetto Protobuf

Callstacks

~45GB/h

perfetto.dev

Ok, now what? We take the ITM, DWT, and ETM data streams and the data in
the ELF file and convert them to a perfetto trace file. We convert the instruction
trace to only function call stacks, which reduces the complexity significantly.
Also reduces the file size significantly. Perfetto is based on FTrace, so you need
to put the relevant data from your scheduler into the ITM to get threading
support. ETM only gives you instructions, NOT data, so you will know that the
scheduler has switched threads, but not WHICH thread! So ETM only makes
sense in combination with ITM.

Trace Visualization
via Perfetto UI

Try it online yourself: github.com/auterion/embedded-debug-tools => ext/orbetto

And this is then visualized by perfetto, which is actually meant to visualize
Android and Linux traces.

- At the top, you can see the CPU is multiplexing all the different threads, but
you can also see the interrupts just below. Note that is happening all within the
same millisecond, each tick is 100µs. NuttX schedules a lot, because it is an
RTOS!

- On the left you can the tasks with name and PID. PX4 has a lot of different
threads.

- We have a lot of work queues for all the sensors, which you can see when the

https://perfetto.dev
https://github.com/Auterion/embedded-debug-tools/tree/main/ext/orbetto

workqueue item is called but often the thread actually gets interrupted a lot.

This view is incredibly educational to see how an RTOS actually works.

Tracking Heap Usage
by logging every single malloc and free

For example, every malloc/free call, which helps you understand the heap
usage. Here you can see a single malloc call with the requested size and the
returned pointer and allocated size including overhead. By adding mallocs and
subtracting frees, you can compute the total heap usage over time. I didn't find
a good UI for this, but you could even analyze heap fragmentation using this
information. Also create a histogram of allocation sizes for optimizing a binning
block allocator for your application. Incredibly useful and it also makes you look
like a wizard if you just whip this out and show other people how PX4/NuttX
works.

You can trace anything
Semaphores, Workqueues and DMA channels

You can really track *anything* over time. Here we're tracing DMA channels and
semaphores. You can see the SPI3 workqueue at the top. It starts two DMA
transfers and then waits on a semaphore.

Spotting Timing Issues
via Perfetto UI

If we zoom out we can also see patterns. Here there was a brown out because
we put too many sensors on the same power rail. And the sensors reinitialized.
Would be nice if we could detect such issues automatically.

Querying Traces
via PerfettoSQL

• Efficient querying via a SQLite-derived syntax via a custom processor

• See: Tracing Summit 2022 - Analysing Perfetto Android traces at every scale

• Very useful for integration testing! How well do all the parts work together?

• PX4 is a complex RTOS so some timing bugs can be very tricky to catch!

perfetto.dev/docs/analysis/trace-processor

So perfetto also has a SQL interface to query your traces. This is very fast.
There is a fantastic talk about this in more detail which I delegate to. The
documentation is also fairly complete. We can write SQL queries to detect
issues with our RTOS, which only show up when putting all the parts together.
So this targets integration testing rather than unit testing.

Trace-Based Metrics
Reducing the complexity of the data

• Goal: catch regressions as early as possible, as often as possible.

perfetto.dev/docs/analysis/metrics

Queries

Sensor Reading Regularity

Comm Link Throughputs

Scheduling Latency vs. Timeouts

Thread Progress vs. Semaphores

Callstack Changes

MAP

New Pull Request

Pull Request Update #1

Pull Request Update #2

Pull Request Update #3

FILTER

inputs

m
et

ric

N
ew

 P
R

PR
 #

1

PR
 #

2

PR
 #

3

REDUCE

We want to have a typical filter-map-reduce pipeline that tests every PR or
branch. Onto every trace we maps a set of queries:

- regular sensor readings is very important for a stable control loop.

- We need high communication link throughputs via DMA.

- Sometimes we have to wait on other threads, would be nice to know what the

wait time distribution is like.

- Catching potential deadlocks, where semaphores are to blame.

- Some functions needs to be called in pairs (enable, disable). Is that

balanced?

https://www.youtube.com/watch?v=eWF3h0VW1mk
https://perfetto.dev/docs/analysis/trace-processor
https://perfetto.dev/docs/analysis/metrics

And then the reduce step renders these metrics into a graph.

Query All Traces
with the Batch Trace Processer

• Pro Tip: You can also run new queries on old traces!

perfetto.dev/docs/design-docs/batch-trace-processor

Perfetto gives you a batch processor for the map-reduce pipeline. Why not do
this processing on device? Because you need to know before hand what
metrics you want. ETM catches *all* instructions, so you can go back in time
and query old traces and get new insights. BUT: only works with instruction
traces, not on ITM data, because you need to add the ITM tracing.

Future: Better Query Language?
We have even more data sources!

rtlola.cispa.de/

C++

uLog

GDB

Trace

DATA FORMAT

C++

Plotjuggler

Python

PerfettoSQL

ANALYSIS

Post-Flight Logs

In-Flight Monitoring

Bench Testing

CI Tracing

USE CASE

Fo
rm

al
 S

pe
ci

fic
at

io
n

Re
lia

bl
e

G
ua

ra
nt

ee
s

Effi
ci

en
t,

M
ai

nt
ai

na
bl

e

M
od

ul
ar

, R
es

ua
bl

e

Ok, so we have a lot more data sources than just traces. We also log on device
and then evaluate this afterwards. Bandwidth is limited, thus we only log the
important things. All of them have different tooling, the PerfettoSQL only works
for the tracing part but what about the rest? Looking into research, the RTLola
specification language may be a solution. The hope is to specify the queries
once and then compile them to all our analysis tools. One specification to rule
them all…

https://perfetto.dev/docs/design-docs/batch-trace-processor
https://rtlola.cispa.de/

Future: RTLola Specification
Specify once and validate everything!

rtlola.cispa.de/

…and in darkness bind them! Or something like that. The idea is to interpret the
off-device data streams against the specification, or alternatively compile the
specification into a on-device monitor. Perhaps in future we can use RTLola to
generate checks for our formats.

Conclusion

• Complicated: Embedded Software + Data Science + Quality Engineering.

• ARM Cortex-M built-in debug and trace hardware is very powerful! Use it!

• Perfetto is a great foundation but optimized for Android/Linux, not Cortex-M.

• Regardless: Incredible promise for solving hard problems head on!

• ORBTrace mini is a fantastic deal for a trace probe!

• Please try out emdbg and give me some feedback.

This is fairly complicated. Perfetto is great and will become even better.
ORBTrace mini is really good value and works fine even for STM32H7.

Embedded Debug Tools: emdbg
a modular toolbox for scripting GDB + tracing Cortex-M

• Fully open-source: https://github.com/auterion/embedded-debug-tools

• Also contains all the trace tools, but not currently feature complete.

• Instructions are on GitHub and API docs available via pdoc emdbg.

• Specific for PX4+NuttX+STM32, but intentionally modular so you can hack it.

• You are very welcome to contribute, I'm actively maintaining this project!

The trace tools are experimental!

Trace tools can be found on GitHub including examples. Not complete yet,
we're still fighting a lot of bugs. There are also a much more mature GDB
Python plugins, which I've given three separate talks on. We are actively
developing the trace tools right now, hopefully much more complete by end of
year.

https://rtlola.cispa.de/
https://github.com/auterion/embedded-debug-tools

Analyzing Cortex-M Firmware
with the Perfetto Trace Processor

Niklas Hauser: salkinium.com

Auterion: auterion.com

Orbcode: orbcode.org

RTLola: rtlola.cispa.de/

emdbg: github.com/auterion/embedded-debug-tools

Thanks for your attention!

Thank you and do you have questions?

https://salkinium.com
https://auterion.com
https://orbcode.org
https://rtlola.cispa.de/
https://github.com/auterion/embedded-debug-tools

