
Niklas Hauser, emBO++25

Data Mining
Hardware Descriptions
from Vendor Code, Configuration Tools, and Documentation

Thank you for the introduction.

Thanks to emBO for the opportunity to talk here.

Who?
Hello, my name is Niklas and I like data science

roboterclub.rwth-aachen.de

'10

modm.io

'13

salkinium.com/elva

'18

'15

uVisorPX4 Autopilot

'23

My name is Niklas.

- I started studying Computer Science some time ago.

- I began building autonomous robots in 2010.

- We created a C++ library which is known as modm.io, a C++23 library

generator that supports several thousand Cortex-M devices.

- I then started at ARM working on Cortex-M sandboxing, before returning to

the university to study for my masters degree.

- There, I worked on a digital modular signalling system for railways.

- I'm currently working at Auterion on the open-source PX4 Autopilot.

modm.io C++23 barebone embedded library

• Generates startup code, linker script, peripheral drivers for microcontrollers.

• Supports 3034 STM32, 416 SAM, 388 AVR, and RP2040.

• Requires a lot of data for every supported device.

Config

lbuild

Application Build System

modm C++ Library

Database

Build Artifacts

Modular, data-driven HAL and build system generator

modm is a C++23 embedded library generator.

- The core of modm is a code generator written in Python called lbuild.

- It queries a database of device data and formats the results into C++23 code.

- The HAL is highly modular and configurable and it allows a very small

maintainer team to support thousands of microcontrollers.

###

- Today we'll talk about the database part of this construct.

http://roboterclub.rwth-aachen.de
http://modm.io
http://salkinium.com/elva
http://modm.io

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0
 M

H
z

(m
a
x
)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4
-b

it
A

X
I
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2
 (

2
0
0
M

H
z
)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4
 (

2
0
0
M

H
z
)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4
 (

2
0
0
M

H
z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
 (

m
a

x)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0
 K

B
 S

R
A

M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0
 M

H
z

(m
a
x
)

A
P

B
4

 1

0
0
 M

H
z

(m
a
x
)

A
P

B
4

 1

0
0
 M

H
z

(m
a
x
)IWDG

Temperature
sensor

HASH

3DES/AES

Hardware is complex

[DS12556]

Microcontroller hardware is quite complex nowadays.

Here is a STM32H7 with its many internal busses.

You can see distributed memories in yellow, you can see lots of peripherals, and
many DMA engines.

Everything also needs to be externally connected via the pins.

That's a lot of hardware to abstract.

Hardware-dependent Software

Porting HdS is a high-effort, data-bound task

Hardware 
dependent 
Software

The HAL is actually part of the hardware-dependent software and there's a lot
of it.

###

It's also operating systems, external sensors, communication protocols, and
bootloaders.

So it's a fairly large topic, not just about microcontrollers itself.

Combine and Share all Data Sources

1. Merge all data sources

2. Generate HdS with data

3. Add features or fix bugs

4. All other projects benefit

So the idea is to parse every data source I can find and merge it into a single
database.

Then I can share this among all my embedded friends: Zephyr, modm and
embassy.

And then I would benefit from any of their improvements to the database as
well.

data.modm.io Conversion Pipelines

Trivially
Machine 
Readable

And I decided to make this an open-source project on GitHub.

It's split into individual pipelines, where each data source is converted
eventually into Python.

###

Let's first focus on the trivially machine-readable data sources.

Configuration Tools: CubeMX
STM32_open_pin_data contains all packages, pinouts, memories

XPath Queries are your friends!

The most well known is the CubeMX GUI application, which allows you to
configure the pin functions of the STM32.

This is actually backed by a XML database that STMicro actually publishes on
GitHub with a BSD licence.

It contains the entire catalog of STM32 ever made, their package, their pinout,
and all alternate functions.

It's undocumented but you can get very far with simple XPath queries.

Many people already use this, including Zephyr, embassy and KiCad to
generate HALs and footprints!

CubeMX Clock Tree However, the CubeMX database also contains a fully annotated graph of the
entire STM32 clock tree.

### 
A typical configuration is to have an external clock source fed into the PLL,
which then increases the clock frequency and feeds it into the system clock,
from which most peripherals are powered.

http://data.modm.io

salkinium.com/stm32/clock

Clock Graph We can also render this clock graph as graphviz graph, and you can see that it
contains all frequency limitations that are used to solve the problems of the
clock tree in CubeMX.

Here we can follow the same configuration: external clock source gets fed into
the PLL and comes out into the system clock.

But now there is a lot more detail visible.

You can also see that this is not really a tree, it's really a graph.

You can find more of these rendered clock graphs on my homepage.

data.modm.io Conversion Pipelines

Machine 
Readable

So that was the easy part, let's now focus on more difficult data sources:
source code.

Parsing CMSIS Header Files

1. Parse peripheral structs to reconstruct register order and offset.

2. Resolve numeric values of macros to reconstruct bit field order and offset.

3. Connect TypeDef instantiation (=peripheral) with macros via name matching.

and converting them back to CMSIS-SVD

We can convert the CMSIS header files back into a register map:

We know the order and width of the registers from the typedef struct.

We know the order and width of the bit fields from the macros.

And we know the peripheral instance and address from the typedef cast.

This does not give us enumerations of any bit fields unfortunately, since they are
simply not in the header files.

http://salkinium.com/stm32/clock
http://data.modm.io

Parsing CubeHAL Header Files

• Neither the STM32 CMSIS-SVD nor CMSIS Header define Bit Field Enumerations.

• We need to parse the Low-Level CubeHAL header files to reconstruct.

CMSIS files are missing Bit Field Enumerations

For some of the bit field enumerations we need to parse the CubeHAL low-level
header files.

Same procedure, we interpret the macros.

###

We can do a reverse lookup to see which macros use the register bit field
definitions and then work backwards from that.

Annoying, but doable.

But does not give every bit field enumeration possible.

data.modm.io Conversion Pipelines

Machine Renderable

Human Readable

Now for the really hard stuff: parsing PDF datasheets.

PDFs are machine-renderable, but not machine-readable.

There's a lot of research out there on information extraction from PDFs, mostly
relating to financial statements.

STMicro PDF Documentation

• STMicro publishes >2600 PDFs for documentation: ~15GB on disk.

• You must consult multiple PDFs with thousands of pages: STM32H7A3/B0/B3.

• How hard could it possibly be to make all these PDFs machine-readable?

You can look, but you cannot parse

STMicro publishes a lot of PDFs: We are only looking at active components,
microcontrollers, sensors, memories.

And there are over 2600 PDFs available: ~15GB.

For one microcontroller, a lot of PDFs apply, here the STM32H7 family has 7
PDFs involved.

Nobody reads them all.

http://data.modm.io

PDF Datasheets: Text
17 Cyclic redundancy check calculation unit (CRC)

17.1 Introduction
The CRC (cyclic redundancy check) calculation unit is used to get a CRC code from 8-, 16-
or 32-bit data word and a generator polynomial.

Among other applications, CRC-based techniques are used to verify data transmission or
storage integrity. In the scope of the functional safety standards, they offer a means of
verifying the Flash memory integrity. The CRC calculation unit helps compute a signature of
the software during runtime, to be compared with a reference signature generated at link
time and stored at a given memory location.

17.2 CRC main features
• Uses CRC-32 (Ethernet) polynomial: 0x4C11DB7

X32 + X26 + X23 + X22 + X16 + X12 + X11 + X10 +X8 + X7 + X5 + X4 + X2+ X +1
• Alternatively, uses fully programmable polynomial with programmable size (7, 8, 16, 32

bits)
• Handles 8-,16-, 32-bit data size

How can we access PDF data? 
For text its relatively simple: each glyph is individually positioned on the page.

There's no semantics for headings or lists or superscript. It's all just individually
positions characters.

THERE IS NO NEED TO OCR PDFs!

PDF Datasheets: Figures

Data register
(output)

read access

Data register
(input)

write access

32-bit AHB bus

crc_hclk

CRC computation

32-bit accesses

CRC_INIT

CRC_CR

CRC_POL

CRC_IDR

Figures are a mix of vector graphics and text. There's no special indication that
this is a figure, it must be detected.

PDF Datasheets: Tables

J3 52 34 26 PB13 I/O TTa (4)
SPI2_SCK,I2S2_CK,USART3
_CTS, TIM1_CH1N,
TSC_G6_IO3, EVENTOUT

ADC3_IN5, COMP5_INP,
OPAMP4_VINP,
OPAMP3_VINP

J2 53 35 27 PB14 I/O TTa (4)

SPI2_MISO,I2S2ext_SD,
USART3_RTS_DE,
TIM1_CH2N, TIM15_CH1,
TSC_G6_IO4, EVENTOUT

COMP3_INP, ADC4_IN4,
OPAMP2_VINP

H4 54 36 28 PB15 I/O TTa (4)

SPI2_MOSI, I2S2_SD,
TIM1_CH3N, RTC_REFIN,
TIM15_CH1N, TIM15_CH2,
EVENTOUT

ADC4_IN5, COMP6_INM

- 55 - - PD8 I/O TTa (1) USART3_TX, EVENTOUT ADC4_IN12, OPAMP4_VINM
(1)

Table 13. STM32F303xB/STM32F303xC pin definitions (continued)
Pin number

Pin name
(function

after
reset) Pi

n
ty

pe

I/O
 s

tr
uc

tu
re

N
ot

es

Pin functions

W
LC

SP
10

0

LQ
FP

10
0

LQ
FP

64

LQ
FP

48

Alternate functions Additional functions

A special case of a figure is a table, where the table cells are drawn in vector
graphics and the text is placed inside that.

That's why if you just attempt to copy the text of the table into an editor, you
usually get garbage.

Note the rotated text in the header, in which order is that copied? It's up to the
PDF reader how to copy this text.

Here you can see the first page of a datasheet. We detect the double column
layout manually, then convert each side. We need to simplify the problems, so
first we

- Convert all 2D information into an abstract syntax tree.

- Then modify that AST to detect the hierarchy of the document and then

normalize page breaks.

- Then format it as HTML.

If this sounds like a compiler, it's basically a PDF frontend, then a number of
AST passes, then a HTML backend. And this actually works really well.

This is the result, for example the pin definition table in the datasheet.

This is a pure HTML table with minimal CSS to look similiar to the PDF.

All of the data is converted as is including line breaks.

Here is the alternate function table.

This is normally broken up across many pages, in the HTML its just one long
table.

We also find the register layout information again for each peripheral. Note that
the text is rotated only by CSS, so the table data is still easily accessible in
HTML.

But what is the
enumeration name?

And I can even convert the invisible table of the bit field and their enumerations
description as a HTML table.

### 
And indeed this is accurate, the PLLR does not exist for this device, so the
guard in the CubeHAL header is actually correct.

###

Unfortunately we have the enumeration value and description, but not a name.
That would need to be generated from the description and that not always easy
to do automatically.

PDF to HTML conversion
Open-sourced at data.modm.io

• Manually written Python3 code based on pypdfium2.

• ~157k PDF pages in 65mins on a MacBook Air M2 => ~25ms per page!

• Works on all PDFs from STMicro: also sensors, not just STM32!

• Most valuable data is inside tables, but table processing is hard and fuzzy.

• Not easily portable to other vendor data sheets due to content segmentation!

• Figures and images are ignored, math formulas are not recognized.

I'm very happy with this pipeline. It's written in Python3 using native bindings
for pdfium (PDF renderer in Chrome). It's entirely deterministic, so the translated
HTML is byte reproducible. It's also very fast with 25ms per page. All STMicro
PDFs are supported, including sensors.

Some compromises: it's not easily portable to other vendors, since the format
recognition is hardcoded. I'm only interested in tables and text, so figures are
completely ignore (should be converted to SVG) and math formulas are turned
into garbage.

http://data.modm.io

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

Res. Res. Res. Res. Res. PEC
BYTE

AUTOE
ND

RE
LOAD NBYTES[7:0]

rs rw rw rw rw rw rw rw rw rw rw

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

NACK STOP START HEAD1
0R ADD10 RD_

WRN SADD[9:0]

rs rs rs rw rw rw rw rw rw rw rw rw rw rw rw rw

PDF Formatting Mistakes

• The PDF sometimes have formatting mistakes: tables with missing cell borders.

• Apply git patch to HTML result: works, but fragile.

Even though it's deterministic and reproducible, some formatting mistakes are
not easy to fix.

A classic is missing border cells in tables.

We could try to infer cells from whitespace analysis between text, but it's fairly
unreliable for such issues.

I just apply a git patch to the HTML, which works because the HTML is so
reproducible.

Interpreting Datasheet Tables
Substitution hell to fix typos in PDFs

But, still interpreting the HTML tables was actually way more annoying that
converting the PDF.

You can to clean the data, because of many typos and random line breaks.

Here I'm using text substitution.

Interpreting Datasheet Tables
Substitution hell to fix typos in PDFs, now with more RegEx

And then I decided to use Regex to fix many patterns in the register definitions.

Interpreting Datasheet Tables
RegEx hell to fix typos for bit field reconstruction

And this then got a little out of hand for the bit field enumerations.

I do not recommend using regex for this, there needs to be a better way.

Evaluation of Data Sources
Actual Science! OMG

Extracted 4 datasets with increasing complexity for ~2700 STM32 devices:

1. Interrupt vector table: PDF vs CMSIS Header

2. Package and pinout: PDF vs CubeMX Database

3. Pin functions: PDF vs CubeMX Database

4. MMIO register map and descriptions: PDF vs SVD vs Header

Compare PDF against machine-readable sources: Headers, SVD, CubeMX

🧑🔬 Ok, but enough regexing around. Let's do some actual science!

We want to find out how accurate our data import pipelines actually are.

So we're going to compare the machine-readable data against the PDF data.

We evaluated in detail four data sets for this.

We fixed obvious spelling mistakes, but only as long as the fix is unambigious.

Po
si

tio
n

Pr
io

rit
y

Type of
priority Acronym Description Address

- - - - Reserved 0x0000 0000

- -3 Fixed Reset Reset 0x0000 0004

- -2 Fixed NMI
Non maskable interrupt. The RCC clock security
system (CSS) and the RAM parity check are linked to
the NMI vector.

0x0000 0008

- -1 Fixed HardFault All classes of fault 0x0000 000C

- 3 Settable SVCall System service call via SWI instruction 0x0000 002C

- 5 Settable PendSV Pendable request for system service 0x0000 0038

- 6 Settable SysTick System tick timer 0x0000 003C

0 7 Settable WWDG Window watchdog interrupt 0x0000 0040

1 8 Settable PVD_VDDIO2 PVD and VDDIO2 supply comparator interrupt
(combined EXTI lines 16 and 31) 0x0000 0044

2 9 Settable RTC RTC interrupts (combined EXTI lines 17, 19 and 20) 0x0000 0048

PDF Interrupt Table vs CMSIS Header
Device → Reference Manual → Table → Position + Name

98.8% match (N=190 109)

🧑🔬 This is fairly easy: it's the interrupt vector table for STM32 microcontrollers.

Quite good.

PDF Pinout vs CubeMX Database
Device → Datasheet → Table → Pin Position + Name

99.88% match (N=247 756)

🧑🔬 The package pinout was extremely accurate. This is just the pin position and
name on the package.

PA12 - TIM16_
CH1 - - - - TIM1_CH2N USART1_

RTS_DE
COMP2
_OUT CAN_TX TIM4_

CH2 TIM1_ETR - USB_
DP

EVENT
OUT

PA13 SWDIO
-JTMS

TIM16_
CH1N - TSC_

G4_IO3 - IR_
OUT - USART3_

CTS - - TIM4_
CH3 - - - EVENT

OUT

PA14 SWCLK
-JTCK - - TSC_

G4_IO4
I2C1_
SDA

TIM8_
CH2 TIM1_BKIN USART2_

TX - - - - - - EVENT
OUT

PA15 JTDI
TIM2_
CH1_
ETR

TIM8_
CH1 - I2C1_

SCL
SPI1_
NSS

SPI3_NSS,
I2S3_WS

USART2_
RX - TIM1_

BKIN - - - - EVENT
OUT

Table 14. Alternate functions for port A (continued)

Port
&

Pin
Name

AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7 AF8 AF9 AF10 AF11 AF12 AF14 AF15

PDF Pin Functions vs CubeMX Database
Device → Datasheet → Table → Pin Name + Function

96.2% match (N=1 107 035)

Data cleanup for cells requires interpretation of newlines, commas, hyphenation

🧑🔬 The signals are a bit more interesting, this is our first 2D data structure.

We looked at over a million signals in our dataset, didn't find any issues with our
PDF-to-HTML pipeline, but many issues in the CubeMX database, as well as
formatting issues in the PDF.

Still very accurate.

Register Map: Header vs SVD vs PDF
183 three-way comparisons of occupied linear address space

🧑🔬 And finally we compared the register maps reconstructed form the CMSIS
Header, vs the CMSIS-SVD vs the PDF.

And this was the most interesting part, because it shows that STMicro has three
slightly different datasets for their hardware.

As a proxy for completeness we can look at the size of the register map. How
many bytes are occupied by the registers.

You can see that the register map reconstructed from the reference manual is
very accurate.

BUT the device resolution is not great:

- the CMSIS headers create 183 register maps,

- The CMSIS-SVD files only 100 register maps, and

- The PDFs only 53 register maps.

Register Map: PDF vs SVD vs Header
Mismatches and fixing them with 2-1 majority voting

🧑🔬 Here is the conflict rate in more detail. We can see that the complex families like
F7, H7 and L4 have the most conflicts overall.

Since we have three differing data sources, we can do majority voting and see
how many differing registers we can fix.

It works well for simple families, and improves the matching data quite a bit, but
we can also see that the combination of CMSIS header and CMSIS-SVD is the
least successful in majority voting.

This is very weird since the CMSIS header files are supposed to be generated
from the CMSIS SVD files.

Results Overview
It's almost great!

• We didn't find any systemic issues in our PDF-to-HTML pipeline!

• STMicro maintains three slightly different datasets for register maps???

🧑🔬 Overall, the machine-readable data is very accurate with 96.5% match at 5.9
million data points.

As a result, I would not use the PDF or the CMSIS-SVD files as primary data
sources unless necessary.

Extract as much as possible from the CubeMX database and CMSIS headers
instead.

data.modm.io : Data Interface

Internal External

Knowledge 
Graph is the 
Interface!

So the question is how to we make this data accessible?

We have a highly heterogeneous dataset, which includes clock graphs, so why
not use a graph database?

The graph database then also acts as the interface to the external world.

Knowledge Graph as Interface
Kuzu Embedded Database

• Perfect for heterogeneous dataset like hardware description.

• Implements Cypher Query Language for many languages.

• Serialization into sorted plaintext allows trivial archiving.

• Simple to install and use: pip install kuzu

I chose Kuzu, which is a small and fast embedded graph database that
implements the Cypher language.

It's easy to install and use and comes with many language bindings: C/C++,
Rust, Python, Web Assembly.

You can see a part of the schema on the right and a cypher query at the bottom
showing alternate functions.

The query returns a table which you can then use to generate code.

http://data.modm.io

There a browser based explorer tool including graph visualization.

Here you can see the package node, surrounded by all the pins and their
corresponding signals.

This is a bit chaotic

Knowledge Graph as Interface
MATCH p=(:Peripheral)-->(:Signal) RETURN p

We can also query only a part of the graph, like specific relations.

Here we query all relations between peripherals and signals.

Package and Pinout Shenanigans

pip install stm_layout

But there are also many other things you can do with this code.

For example REGEX your alternate functions!

This is a smol TUI tool based on the CubeMX database, here showing all the
pins that have an ADC input signal.

Package and Pinout Shenanigans
This also works for BGA pins, here searching for all pins with I2C data and clock
signals.

This is very useful to quickly find alternate functions, since the CubeMX gui is
not great for searching like this.

Memory Map Shenanigans

Why not simply™
regex your
register map?

I apologize to your eyeballs. This is code from modm.

modm uses Python Jinja templates to generate startup code, where we need to
enable the clock to the system config and power peripherals.

And it's very annoying since the bit is in different registers depending on the
family.

###

So instead, why not just regex the register?

###

This abomination actually works really well…

More Use Cases
Everything is a Query when all you have is Data

• Modularize and generator your own HAL much easier.

• HTML version of pinout and clock configurator. No more CubeMX.

• Optimizing constraint solver for pinout and clock limitations.

• Diffing HTML versions of Datasheets and Reference Manuals.

• Much more accurate CMSIS-SVD files from the CMSIS Header + PDF.

• Testing AI models against PDF-to-HTML-to-Knowledge-Graph pipeline.

There are many more use cases that I didn't go into.

A nice one would be to create a simpler CubeMX application as a HTML page,
something that can configure and generate code for other HALs.

You can apply a SAT solver to the database of course to solve design
constraints and help with parts selection.

You can now diff PDFs via the HTML version.

And you can generate much more accurate SVD files than the official ones.

If you think your AI model can do better, I've basically built you a benchmark.
BEWARE.

Conclusion
and Future Work

• STMicro publishes several machine-readable data sources on GitHub!

• Parsing machine-readable data sources is easy and very accurate.

• Parsing PDF/HTML is difficult due to typos and formatting mistakes.

• modm-data: PDF2HTML works well, rest is "academic" code quality.

• Knowledge Graphs are a good database for heterogenerous data sets.

• Documentation and discoverability of Knowledge Graph Ontology is difficult.

There's a lot of machine-readable data on GitHub, it needs to be put in a good
database. Knowledge graphs are still pretty niche.

Parsing PDFs is hard because of humans, rather than accessing the PDF. Some
fuzzy matching required.

The PDF2HTML pipeline works really well in modm-data, the rest needs to be
rewritten.

Data Mining Hardware Descriptions
Questions?

Niklas Hauser likes data science.

Homepage:

Fediverse:

Code:

Thesis:

Paper:

GitHub:

salkinium.com

@salkinium@chaos.social

github.com/salkinium

salkinium.com/hp23.pdf (peer-reviewed!)

github.com/modm-io/modm-data

data.modm.io

salkinium.com/master.pdf

If you want to know more details, including citations, check out master thesis
and my peer-reviewed paper.

All the code is public and somewhat documented.

Do you have Questions?

https://salkinium.com
https://chaos.social/@salkinium
https://github.com/salkinium
https://salkinium.com/hp23.pdf
https://github.com/modm-io/modm-data
https://data.modm.io
https://salkinium.com/master.pdf

