Data Mining
Hardware Descriptions

from Vendor Code, Configuration Tools, and Documentation

Niklas Hauser, emBO++25 BO

Thank you for the introduction.
Thanks to emBO for the opportunity to talk here.

Who?

Hello, my name is Niklas and | like data science

=m | RWTH SEERG-- — O
Wl _’*‘RCA modJim

roboterclub.rwth-aachen.de

mOd .
[=[N]{=]=l{N=]4
!

Auterion <« a rm

PX4 Autopilot salkinium.com/elva uVisor

My name is Niklas.

| started studying Computer Science some time ago.

| began building autonomous robots in 2010.

We created a C++ library which is known as modm.io, a C++23 library
generator that supports several thousand Cortex-M devices.

| then started at ARM working on Cortex-M sandboxing, before returning to
the university to study for my masters degree.

There, | worked on a digital modular signalling system for railways.

I'm currently working at Auterion on the open-source PX4 Autopilot.

modm.io C++23 barebone embedded library
Modular, data-driven HAL and build system generator

« Generates startup code, linker script, peripheral drivers for microcontrollers.

« Supports 3034 STM32, 416 SAM, 388 AVR, and RP2040.

« Requires a lot of data for every supported device.

| Application }—»

Build Artifacts

Config

Build System }—b

C++ Library

modjm

modm is a C++23 embedded library generator.

- The core of modm is a code generator written in Python called lbuild.

- It queries a database of device data and formats the results into C++23 code.

- The HAL is highly modular and configurable and it allows a very small
maintainer team to support thousands of microcontrollers.

###

- Today we'll talk about the database part of this construct.

http://roboterclub.rwth-aachen.de
http://modm.io
http://salkinium.com/elva
http://modm.io

Hardware is complex

wrou | [orom |[oem
ke || ewa || saxe

i

em
]
eS| SRAM

- g5
‘CHROM-ART _
©wazp) | PO
g LeoTFT| FIFO
i — - iy
o

64-bit AXI BUS-MATRIX.

MMMMM

Microcontroller hardware is quite complex nowadays.

Here is a STM32H7 with its many internal busses.

You can see distributed memories in yellow, you can see lots of peripherals, and
many DMA engines.

Everything also needs to be externally connected via the pins.

That's a lot of hardware to abstract.

Hardware-dependent Software

Application
Middleware Board Support

Hardware Operating | Communication Protocols I A Boot
dependent System I Device Drivers I Firmware
Software
i1 i1 t1
¥ { System Bus__§ !

Porting HdS is a high-effort, data-bound task

The HAL is actually part of the hardware-dependent software and there's a lot
of it.

HH#t#

It's also operating systems, external sensors, communication protocols, and
bootloaders.

So it's a fairly large topic, not just about microcontrollers itself.

Combine and Share all Data Sources

CMSIS CMSIS Configuration

Technical

Header SVD Tools Documentation
1. Merge all data sources / 3. Add features or fix bugs
2. Generate HdS with data ? 4. All other projects benefit

Shared

Zephyr modm
C[31] Cr+ [34]

Feature/ @ Database
Bugf / 5 \@
@)

Embedded

Rust [59]

So the idea is to parse every data source | can find and merge it into a single
database.

Then | can share this among all my embedded friends: Zephyr, modm and
embassy.

And then | would benefit from any of their improvements to the database as
well.

data.modm.io Conversion Pipelines

‘ PDF }—» HTML
) CMSIS-SVD
‘ CMSIS Header ——"1 A\
Python
CubeHAL

Open Pin Data

Trivially
Machine

CubeProg Readable

And | decided to make this an open-source project on GitHub.

It's split into individual pipelines, where each data source is converted
eventually into Python.

#Hit#

Let's first focus on the trivially machine-readable data sources.

Configuration Tools: CubeMX

STM32_open_pin_data contains all packages, pinouts, memories

<Pin Name="PB13" Position="26" Type="I/0">
<Signal Name="ADC3_IN5"/>
<Signal Name="COMP5_INP"/>
<Signal Name="I2S2_CK"/>
<Signal Name="QOPAMP3_VINP"/>
<Signal Name="0PAMP3_VINP_SEC"/>
<Signal Name="OPAMP4_VINP"/>
<Signal Name="0PAMP4_VINP_SEC"/>

<Signal Name="SPI2_SCK"/>
STM32F303CCTx P10_Analo <Signal Name="TIM1_CHIN"/>
VaNTOU <Signal Name="TSC_G6_I03"/>
<Signal Name="USART3_CTS"/>
<Signal IOModes="Analog,EVENTOUT ,EXTI"
</Pin>

XPath Queries are your friends!

The most well known is the CubeMX GUI application, which allows you to
configure the pin functions of the STM32.

This is actually backed by a XML database that STMicro actually publishes on
GitHub with a BSD licence.

It contains the entire catalog of STM32 ever made, their package, their pinout,
and all alternate functions.

It's undocumented but you can get very far with simple XPath queries.

Many people already use this, including Zephyr, embassy and KiCad to
generate HALs and footprints!

e I CubeMX Clock Tree

vy vy

However, the CubeMX database also contains a fully annotated graph of the
entire STM32 clock tree.

Hit#

A typical configuration is to have an external clock source fed into the PLL,
which then increases the clock frequency and feeds it into the system clock,
from which most peripherals are powered.

http://data.modm.io

| < e < < meiE

Clock Graph

salkinium.com/stm32/clock

We can also render this clock graph as graphviz graph, and you can see that it
contains all frequency limitations that are used to solve the problems of the
clock tree in CubeMX.

Here we can follow the same configuration: external clock source gets fed into
the PLL and comes out into the system clock.

But now there is a lot more detail visible.

You can also see that this is not really a tree, it's really a graph.

You can find more of these rendered clock graphs on my homepage.

data.modm.io Conversion Pipelines

‘ PDF }—» HTML

CMSIS Header

CMSIS-SVD

-~ s Python

Machine
Open Pin Data [

Readable
CubeHAL

CubeProg

So that was the easy part, let's now focus on more difficult data sources:
source code.

Parsing CMSIS Header Files
and converting them back to CMSIS-SVD

1. Parse peripheral structs to reconstruct register order and offset.
2. Resolve numeric values of macros to reconstruct bit field order and offset.

3. Connect TypeDef instantiation (=peripheral) with macros via name matching.

#define PERIPH_BASE 0x40000000UL
#define AHB1PERIPH_BASE (PERIPH_BASE + 0x00020000uL) ~ (YyPedef struct
#define CRC_BASE (AHB1PERTPH_BASE + 0x3000UL) 10 uint32 ¢ DR:
#define CRC ((CRC_TypeDef *) CRC_BASE) —I0 uints T Ipk:
uint8_t RESERVED®;
¢ uint16_t RESERVED1;
#define CRC_CR_RESET_Pos (oU) __I0 uint32_t CR;

#define CRC_CR_RESET Msk (0x1UL << CRC_CR_RESET_Pos) } CRC_TypeDef;
#define CRC_CR_RESET CRC_CR_RESET Msk -

We can convert the CMSIS header files back into a register map:

We know the order and width of the registers from the typedef struct.
We know the order and width of the bit fields from the macros.

And we know the peripheral instance and address from the typedef cast.

This does not give us enumerations of any bit fields unfortunately, since they are
simply not in the header files.

http://salkinium.com/stm32/clock
http://data.modm.io

Parsing CubeHAL Header Files

CMSIS files are missing Bit Field Enumerations

* Neither the STM32 CMSIS-SVD nor CMSIS Header define Bit Field Enumerations.

« We need to parse the Low-Level CubeHAL header files to reconstruct.

#define RCC_CFGR_SW_Pos (ou)

#define RCC_CFGR_SW_Msk (0x3UL << RCC_CFGR_SW_Pos)
#define RCC_CFGR_SW RCC_CFGR_SW_Msk

#define RCC_CFGR_SW_0 (0x1UL << RCC_CFGR_SW_Pos)
#define RCC_CFGR_SW_1 (0x2UL << RCC_CFGR_SW_Pos)

#define LL_RCC_SYS_CLKSOURCE[HSI | 0x00000000U
#define LL_RCC_SYS_CLKSOURCEJHSE | RCC_CFGR_SW_0
#define LL_RCC_SYS_CLKSOURCEJPLL | RCC_CFGR_SW_1
#if defined (RCC_PLLR_SYSCLK_§UPPORT)

#define LL_RCC_SYS_CLKSOURCEJPLLR] (RCC_CFGR_SW_1|RCC_CFGR_SW_0)
#endif

For some of the bit field enumerations we need to parse the CubeHAL low-level
header files.

Same procedure, we interpret the macros.

Hit#

We can do a reverse lookup to see which macros use the register bit field
definitions and then work backwards from that.

Annoying, but doable.

But does not give every bit field enumeration possible.

data.modm.io Conversion Pipelines

[‘ PDF }—» HTML
Machine Renderable)
() CMSIS-SVD
Human Readable CMSIS Header — 1 A\

i N Python

(/ Open Pin Data [
CubeHAL /
CubeProg

Now for the really hard stuff: parsing PDF datasheets.

PDFs are machine-renderable, but not machine-readable.

There's a lot of research out there on information extraction from PDFs, mostly
relating to financial statements.

STMicro PDF Documentation
You can look, but you cannot parse

« STMicro publishes >2600 PDFs for documentation: ~15GB on disk.
« You must consult multiple PDFs with thousands of pages: STM32H7A3/B0/B3.

* How hard could it possibly be to make all these PDFs machine-readable?
Programming Manual

Datasheet DS13135 <——. Reference Manual
RMO455 RM0253

Datasheet D513195
ARM Cortex-M7

Errata Sheet i
Datasheet DS13196 [+—— ES0478 TCC}"‘;;’;HI‘)‘JZ?“““

STMicro publishes a lot of PDFs: We are only looking at active components,
microcontrollers, sensors, memories.
And there are over 2600 PDFs available: ~15GB.

For one microcontroller, a lot of PDFs apply, here the STM32H7 family has 7
PDFs involved.
Nobody reads them all.

http://data.modm.io

PDF Datasheets: Text
Cyclicredundanlcly check icalicullation unit (CRC)

How can we access PDF data?

For text its relatively simple: each glyph is individually positioned on the page.
There's no semantics for headings or lists or superscript. It's all just individually
positions characters.

THERE IS NO NEED TO OCR PDFs!

Figures are a mix of vector graphics and text. There's no special indication that
this is a figure, it must be detected.

WrCsPapo

i)
eS|

ol

A special case of a figure is a table, where the table cells are drawn in vector
graphics and the text is placed inside that.

That's why if you just attempt to copy the text of the table into an editor, you
usually get garbage.

Note the rotated text in the header, in which order is that copied? It's up to the
PDF reader how to copy this text.

Features

Document: DS11581

Features

N _ + Includes ST state-of-the-art patented.
ME%)MM(M Heading 1: STM32F413xG techmology
o b= [i W |_Paragraph: Arm-Cortex-M4
= HarciBsnshzs Clanpssiis fesTRn{ER o) e f8% | | Heading 3: Features
Coro AT 32 i ist:

Adaptive (ART) L] %‘N“ﬂ'ﬂ ners: up 1o twelve 16-bit limers, two(|_List: o
. -bit timers up to 100 MHZ each with up o s i

Astomo it eyt TR Element: Dynamic
ey proectonink (ZODMPS| gasmam ol e el i L List: -
LTSI s STk mer, et low powermer } Element: 1.7 V to
Meiriios: ¥ Deng L_Element: -40 °C to
g &b‘—i% T Cortex® M4 Embedded Trae Macsocsli™ | Element: Core Arm 32-bit
- Fi exterral static Up{fo 1114 1O ports withi | _Element: Memories

Vi to 1Bt o SRM.PSRAM. - Upta 109 fask YOs g o 100Nz L List: -

N = Upifo 114 five:Vtolerant JOs. ist:

= o] Element: Up to 1.5

g - Um Element: 320 Kbytes

» Clok; st ond supoly ranagemnt = Upllo IOUARTS, 4 USARTs /B UART:

- 1.7 1038 V.application supply, and ¥Os. &x\zsm;‘mzwwmma Element: Flexible
~ POR,PDR PVD and BOR - Heteca PO e Element: Dual mode
T 2026 Mz prystal ecillelor LR EPISs (O e P

g Internal 16 MHz factory-rimmed RC/ full-duplex |25 interfaces :

~ Internal 32 kHz RC it calibration T Advanced conmectiiy|USB 2.0 il spescl Element: General purpose

Pl corsuilon ottt By Figure: omitted
= Stop (Flash in Stop mode., fast wakeup(= HSA ist: e
~ Imek 42U\ Typl B VA mex @25 C. # Trolrandom pimbey goneralr Element: Up to 18 timers

‘slow 15 pA Ty g :

St el A HEE 5 Elemenc. Debug mode
= Sy o RTCHTATYR # RTCsubsocond accufacyi awareicalercei: List: -

77 pA maxal @86 'C # Alpackiges s ECOPACK™2 Element: Serial
= Vigarsupply for RTC: 1 WA @25C

+ BAZDRDA; Table 1. Element: Cortex-M4

» TX2BR24MSPS ADGi B 5 B harvels R pat s .

B fiters for sigma delta modulator, | STMFATICH STMDFIIMH STV ATRH. .

DM pinces v s ey | e | ST T Element: ALl packages
enecross | ETARCS TG CTATG. Table 2x3: Device summary

= Generakpuspose DMA 16:siram DMA

A

Here you can see the first page of a datasheet. We detect the double column

layout manually, then convert each side. We need to simplify the problems, so

first we

- Convert all 2D information into an abstract syntax tree.

- Then modify that AST to detect the hierarchy of the document and then
normalize page breaks.

- Then format it as HTML.

If this sounds like a compiler, it's basically a PDF frontend, then a number of

AST passes, then a HTML backend. And this actually works really well.

Table 10. STM32F413xG/H pin definition g .
B Th th It, f mple the pin definition tabl the datasheet
S —] is is the result, for example the pin definition table in the datasheet.
EEE é g 3 g (unetion ‘1;": e e| Notes | Alternate fumetions | 43%itional e
EHEHHERES This is a pure HTML table with minimal CSS to look similiar to the PDF.
TRACECLK, A” f . 0 0 . .
sp s the dat rted luding line break
e scms of the data is converted as is including line breaks.
SAIlL_MCLK_A,
-INC| 1 |B2|A3 |1 PE2 o FT @ QUADSPI_BKI_102,
UARTI0_RX,
FSMC_A23,
EVENTOUT
TRACEDO, SATI_SD_B,
SINc| 2 | AL [A2|2 PE3 Vo FT @ qui';rcmig“
EVENTOUT
TRACED1,
SPI4_NSS/1284_WS,
SPIS_NSS/12S5_WS,
-|NC| 3| BI|B2|3 PE4 o FT @0) SAII_SD_A,
DFSDM1_DATIN3,
FSMC_A20,
EVENTOUT
TRACED2, TIM9_CH1,
SPI4_MISO,
et Here is the alternate function table.
Port SYS_ | TIMIY DFSDM2 | 12CV2 12/ | USARTY4/ o~ o | SYS
AP | e | TS o | eren S | AN VARt RNG| N I . . .
This is normally broken up across many pages, in the HTML its just one long
o T M g e USARTZ_ | UART BN
— e table.
- “| o2 | | RTS RX ouT
e 2o | - | v sz e UsAk2. Tcpd . [evmer
s vz cne | - | e i 1252 MoK USART2. sanLsp.B ey [EvenT
Pad [spu_Nssm2 [spis Nssi | USART2_ | DESDMI | FSMC_D6/ | EVENT
e Sepn | .| - o
e T | | o | [smanso | msavex | PRRVE || Th oy spio. Even
< e TIMI_ | TIM3_ | TIMs_ ~ [sPu_mosu| DFSDM2_ | mvia_ | QuapsPLB EVENT
e | - | | b
AR aly o]
e | - [] -] Je
i s DesDl SPLNSST2 | 1y s | USARTL | USARTG. | ¢y gy | USBLFS.. | UARTS. By

rable 24. RCC register map and reset values for STM32F413/423
Addr| Reister |)22 %5 8| 4|3 |qw aE=sa:ma:sHmrMmHmu—:
HEES ezl z |z
0x00 RCC_ gggg%nﬁq ‘5'3;23 HSICAL(7:0] HSITRIM[4:0 329
. CR AR] b P = A PP R PR A R [7:01 [lxmg
|22 & Ol=|ZE| = T
&
9 g
0x04 ReC &|PLLRI20]| PLLQI3:0] “é‘ 5 PLLN[8:0] PLLM[5:0]
PLLCFGR | & g W) S\l 5 | :
~ &
= g g = = =
g & & z g 5 s | =
RCC. = 3 3 =) & " 2|7
_ = = & = y = | 2
0x08 | CrGR g & £ |&| g | wrcereiol g 5 |&|&| wrepoy | 5
| g 8 H £ £ &
= =
o) o
=o|lp|lulo SEIEREIEIE NI
A) ol |BIE|ZIB|Z|% HEEEHEHEARBEEEHEE
0x0C RCC_ 4l 4] 4| 4| 4| ¢ mggggagag xncaagmﬁgaaagn
X CIR xx:ﬁxxmmmsxgqugmzz @gﬁu?ﬁﬁﬁmﬁ_jgamé
S| 2|2|3]3 SEEEEE EEIEIEIE
= 2 =
e elelelelelelels
>3 AR7) nlaly
RCC ilal sl sl gl ol ol ¢l 6| 212 2 E é 2|2 g g|& g
0x10 | L ppIRSTR ||| & | ||| 4|2 | 2| S| 2| 4| 2| 2|4 2| 2|4 L8 2| 2|4 £|5|2|c|e|gle|g|g
Z|Z o MR
ala EEEEEEEE

We also find the register layout information again for each peripheral. Note that
the text is rotated only by CSS, so the table data is still easily accessible in
HTML.

63.3 RCC clock configuration register (RCC_CFGR)
Address offset: 0x08
Reset value: 0x0000 0000
Access: 0 < wait state = 2, word, half-word and byte access
1 0r 2 wait states inserted only if the access occurs during a clock source switch

31 30 29 28 27 26 25 24 23 22 21 2019 1817 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

[mcoz(1:0 [Mco2 PRE(201 [MCO1 PRE[2:0] [Res. [MCOI[1:0) | RTCPRE[4:0] [PPRE2(2:0) [PPREI(20] [Res.[Res. | HPRE(3:0] [sws(1:0] [swiio]

[olm [w [[[w [][| [w] [wlsalslsls]nlwlw[sln] | [s[v]ss] [« [»]n]

Bits 31:30 MCO2{1:0):

may generate glitches on MCO2. Itis
only after reset before enabling the external

#define LL_RCC_SYS_CLKSOURCEJHST
#define LL_RCC_SYS_CLKSOURCEJHSE
#define LL_RCC_SYS_CLKSOURCE|PLL

#if defined (RCC_PLLR_SYSCLK_ RT)
#define LL_RCC_SYS_CLKSOURCE_PLLR
#endif

top or Standby mode or in
e system

But what is the
enumeration name?

And | can even convert the invisible table of the bit field and their enumerations
description as a HTML table.

#Hit#

And indeed this is accurate, the PLLR does not exist for this device, so the
guard in the CubeHAL header is actually correct.

#it#

Unfortunately we have the enumeration value and description, but not a name.
That would need to be generated from the description and that not always easy
to do automatically.

PDF to HTML conversion

Open-sourced at data.modm.io

« Manually written Python3 code based on pypdfium2.
« ~157k PDF pages in 65mins on a MacBook Air M2 => ~25ms per page!
+ Works on all PDFs from STMicro: also sensors, not just STM32!

* Most valuable data is inside tables, but table processing is hard and fuzzy.

« Not easily portable to other vendor data sheets due to content segmentation!

« Figures and images are ignored, math formulas are not recognized.

I'm very happy with this pipeline. It's written in Python3 using native bindings
for pdfium (PDF renderer in Chrome). It's entirely deterministic, so the translated
HTML is byte reproducible. It's also very fast with 25ms per page. All STMicro
PDFs are supported, including sensors.

Some compromises: it's not easily portable to other vendors, since the format
recognition is hardcoded. I'm only interested in tables and text, so figures are
completely ignore (should be converted to SVG) and math formulas are turned
into garbage.

http://data.modm.io

PDF Formatting Mistakes

* The PDF sometimes have formatting mistakes: tables with missing cell borders.

* Apply git patch to HTML result: works, but fragile.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Yt MO LoAD NBYTES[70]
s [w [w [w [[w [w [w][w][w][w]
15 14 13 12 " 10 9 8 7 6 5 4 3 2 1 0
NACK sTOP START MEADT appio RBC SADD(9:0]
[e[e Tw [w [w o[w o [w] o]~]

Even though it's deterministic and reproducible, some formatting mistakes are
not easy to fix.

A classic is missing border cells in tables.

We could try to infer cells from whitespace analysis between text, but it's fairly
unreliable for such issues.

| just apply a git patch to the HTML, which works because the HTML is so
reproducible.

Interpreting Datasheet Tables
Substitution hell to fix typos in PDFs

package = package.replace("UFBGA/TFBGA64", "UFBGA64/TFBGA64")

package = package.replace("LPQF", "LQFP").replace("TSSPOP", "TSSOP")

package = package.replace("UFBG100", "UFBGA100").replace("UBGA", "UFBGA")

package = package.replace("UQFN", "UFQFPN").replace("WLCSP20OL", "WLCSP20")

package = package.replace("UFQFPN48E", "UFQFPN48+E").replace("UFQFN", "UFQFPN")

package = package.replace("LQFP48 SMPS
UFQFPN48 SMPS", "LQFP48/UFQFPN48+SMPS")
package = package.replace("LQFP
64", "LQFP64").replace("LQFP
48", "LQFP48")
package = package.replace("UFQFPN
32", "UFQFPN32").replace("UFQFP
N48", "UFQFPN48")
package = package.replace("WLCSP
25", "WLCSP25")

But, still interpreting the HTML tables was actually way more annoying that
converting the PDF.

You can to clean the data, because of many typos and random line breaks.
Here I'm using text substitution.

Interpreting Datasheet Tables
Substitution hell to fix typos in PDFs, now with more RegEx

patterns = {
Pt e k?\ (([A=Z]+|DMA2D)\) L x?" s PM\1",
r''Reserved|Port |Power|Registers|Reset|\(.*?\) |_REG": "",
r'(\d)/I2s5\d": r"\1", r"/I2S|CANMessageRAM|Cortex-M4|I2S\dext|~GPV$": "",
r"Ethernet": "ETH", r"Flash": "FLASH", r"(?i).*ETHERNET.*": "ETH",

r(?i)Firewall: "FW", r"HDMI-|": "", "SPDIF-RX": "SPDIFRX",
r"SPI2S2": "SPI2", "Tamper": “TAMP", “TT-FDCAN": "FDCAN",

r"USBOTG([FH])S": r"USB_OTG_\1S", "LCD-TFT": "LTDC", “DSIHOST": "DSI",
“TIMER": "TIM", r"~VREF$": "VREFBUF", "DelayBlock": "DLYB",

WI/QW: UMM, WT/QM: "M, WDACI/2": "DAC12",

P lamg]ts e

And then | decided to use Regex to fix many patterns in the register definitions.

Interpreting Datasheet Tables

RegEx hell to fix typos for bit field reconstruction

off_replace = {r" +": "", "0x000x00": "0x00", "to": "-", "x": "', r"\(\d+\)": ""}
dom_replace = {r"Register +size": "Bit position"}
reg_replace =
o\, P\ (COM(\d)\) " rt_COM\1",
r"~[Rrles$| |@x [\da-fA-FXx]+|\ (. *7\) [-": ",
enabled": "_EN", "disabled": "_DIS",
(71) Inputcapturemode”: “_Input", “mode": ",
"SPI2S_": "SPI_",

r'(?i)reserved|resetvalu

r"(?i)Outputcomparemod

r"ATG_FS_": "0TG_FS_",

r"andTIM\d+_.*": "", r"x=
fld_replace = {

0 :
[\d,]+

FD AN+ (th rdnd[st)™s "1, F + [\ N LA [\ [2\d+:\ a1 2 [\ *2\) = | ATNXX 48 [%] __[:0\]": ",
A

r'Dataregister|Independentdataregister": "DAT
r"Framefilterreg@.x": “FRAME_FILTER_REG",
r"[Rrles(erved)?| [Rrlegular|x_x(bits)? |[NotAvailable|RefertoSection\d+:Comparator": ""
r"Sampletimebits|Injectedchannelsequence|channelsequence|conversioninregularsequencebits'
r''conversioninsequencebits |conversionininjectedsequencebits |or|first|second|third|fourth'
bit_replace = {r".x:": ""}
glo_replace = {r"[Rr]eserved": ""}

And this then got a little out of hand for the bit field enumerations.
| do not recommend using regex for this, there needs to be a better way.

]
24
&

N

Evaluation of Data Sources
Actual Science! OMG

Extracted 4 datasets with increasing complexity for ~2700 STM32 devices:
1. Interrupt vector table: PDF vs CMSIS Header

. Package and pinout: PDF vs CubeMX Database

. Pin functions: PDF vs CubeMX Database

A W N

. MMIO register map and descriptions: PDF vs SVD vs Header

Compare PDF against machine-readable sources: Headers, SVD, CubeMX

Ok, but enough regexing around. Let's do some actual science!

We want to find out how accurate our data import pipelines actually are.

So we're going to compare the machine-readable data against the PDF data.
We evaluated in detail four data sets for this.

We fixed obvious spelling mistakes, but only as long as the fix is unambigious.

]
2]

U

PDF Interrupt Table vs CMSIS Header

Device — Reference Manual — Table — Position + Name

A
sl£
=215 Type of Acronym Description Address
2 | 2 | priority
S|&
== = 2 Reserved 0x0000 0000
3 | Fixed |Reset Reset 0x0000 0004
Non maskable interrupt. The RCC clock security
2 | Fixed [NMI system (CSS) and the RAM parity check are linked to | 0x0000 0008
the NMI vector.
A | Fixed |HardFault Al lasses of fault 0x0000 000C
3 | Settable | svcall System service call via SWI instruction 0x0000 002C
5 | Settable | Pendsv Pendable request for system service 0x0000 0038
| & [settable| sysTick System tiok timer 0x0000 003C
o | 7 |setabie|wwoc Window watchdog interrupt 0x0000 0040
PVD and Vpp;0z Supply comparator internint
1] & |Setiable] PVD_VDDIO2 (combined EXTI lines 16 and 31) 98.8% match (N=190 109)
2 | 9 [setabie[RTC RTC interrupts (combined EXTIines 17, 1w e cv) | unvvuns v

This is fairly easy: it's the interrupt vector table for STM32 microcontrollers.
Quite good.

@

PDF Pinout vs CubeMX Database

Device — Datasheet — Table — Pin Position + Name

)
Pin nfimber Pin functions

e
. Pinname | o | §

S 8|z |a|tuncton|S|5]8

GlEJE g M |=s|% 2| Ateratefunctions Additional functions
S 5 1E & resey |=|3

$1919|2 2

SPI2_SCK 1252_CK,USART3 [ADC3_INS, COMP5_INP,
J3 | 52f3a 26| P13 fuo|TTa|@|_CTS, TIM1_CHIN, OPAMP4_VINP,
TSC_G6_l03, EVENTOUT | OPAMP3_VINP

SPI2_MISO,[252ext_SD,
(@ |USART3_RTS_DE, COMP3_INP, ADC4_IN4,
2| sspss ey Pe1 QUOITI gy Chian, TiM15_CH1, | OPAMPZ_VIN
TSC_G6_I04, EVENTOUT
SPI2_MOSI, 1252_SD,
@ | TIM1_CH3N, RTC_REFIN,
Ha | 54§36 28) PBIS JUO|TTal ™y 5 o, Tivits_crz, | ACC 99.88% match (N=247 756)
EVENTOUT |

The package pinout was extremely accurate. This is just the pin position and
name on the package.

PDF Pin Functions vs CubeMX Database

Device — Datasheet — Table — Pin Name + Function

Port
| aro | aFt | aF2 | ars | aFa | aFs | ars AF7 | AF8 | AF9 | AF10 | AFM | AF12 | AF14 | AF15
Name.
TG USART1_ | COMP2 Tivia_ 7 USB_ | EVENT
PA12 i - - |mvi_cran | [BARTL | SONP fean x| - | Tinn_eTR b B
oara | SWO0 [Twie | [se [[iR ~ fusarma_| e i i ~|event
JTMS |CHIN G4_i03 out cTs cH3 out
sweLk TSC_ |12C1_ |TIMe_ USART2_ EVENT
PA14 | jrek - © |G4_ios |SDA [cHz | TMIBKIN |oy - - - - - © lour
TiMz_
pats oo oo [TMe_| |eci_ [P [sPanss, |usaRt2_| (Tt | . | |event
SH- Jomt scL [nss” [izs3ws [RX BKIN out

Data cleanup for cells requires interpretation of newlines, commas, hyphenation

96.2% match (N=1 107 035)

The signals are a bit more interesting, this is our first 2D data structure.

We looked at over a million signals in our dataset, didn't find any issues with our
PDF-to-HTML pipeline, but many issues in the CubeMX database, as well as
formatting issues in the PDF.

Still very accurate.

R

Register Map: Header vs SVD vs PDF

183 three-way comparisons of occupied linear address space

| =3 CMSIS Header
—— CMSIS-SVD

1)
S
~
w

Reference Manual

Memory Map Size [Byte]
S &
=~ =
o @

5KkB
0kB -
F0O Fl B2 F3 F4 F7 G0 G4 HI L0 LI L4 L4+
Unique Three-way Comparison Sorted by Device Identifier and Grouped by Family

Hierarchy Level | Conflict Size | Total Map Size ~ Conflict-Free Locations | Overlap Map Size Matching Locations
Peripherals 2748B 55376 B 95.0% 42752B 93.6%
Registers 35406B 1188994B 97.3% 891044B 96.0 %
Bit Fields 379 180bit 5711619bit 93.3% 3425903 bit 88.9%

And finally we compared the register maps reconstructed form the CMSIS
Header, vs the CMSIS-SVD vs the PDF.

And this was the most interesting part, because it shows that STMicro has three
slightly different datasets for their hardware.

As a proxy for completeness we can look at the size of the register map. How
many bytes are occupied by the registers.

You can see that the register map reconstructed from the reference manual is
very accurate.

BUT the device resolution is not great:

- the CMSIS headers create 183 register maps,

- The CMSIS-SVD files only 100 register maps, and
- The PDFs only 53 register maps.

S
R

Conflict Rate [%]
0
R

<
B

Register Map: PDF vs SVD vs Header ¥
Mismatches and fixing them with 2-1 majority voting
Using Majority Voting
Relative Conflict Rate
P o R a —-—’_r_
FO Fl F2 F3 F4 F1 G0 G4 H7 L0 L1 L4 L4+

Unique Three-way Comparison Sorted by Device Identifier and Grouped by Family

Resolvable by
Majority Vote

Reference Manual + CMSIS Header + CMSIS-SVD +

Hierarchy Level CMSIS Header CMSIS-SVD Reference Manual

Matching and
Resolved Locations

Peripherals 44.1% 78.9 % 19.8% 1.3%
Registers 41.7% 40.1% 155% 44.4%
Bit Fields 63.0% 38.8% 229% 383%

96.4 %
91.7 %
95.9 %

Here is the conflict rate in more detail. We can see that the complex families like
F7, H7 and L4 have the most conflicts overall.

Since we have three differing data sources, we can do majority voting and see
how many differing registers we can fix.

It works well for simple families, and improves the matching data quite a bit, but
we can also see that the combination of CMSIS header and CMSIS-SVD is the
least successful in majority voting.

This is very weird since the CMSIS header files are supposed to be generated
from the CMSIS SVD files.

Results Overview

It's almost great!

+ We didn't find any systemic issues in our PDF-to-HTML pipeline!

« STMicro maintains three slightly different datasets for register maps???

>

S

@

Dataset Sources Method of Comparison Result
Device Identifier Datasheet > CubeMX 932%
Package Datasheet = CubeMX 99.68 %
Pinout @ Datasheet vs. D CubeMX Vi i hame at package position 99.88 %
Pin Function Matching index for function name at pin 96.2%
Interrupt Vector Table (3) Reference Manual vs. (5) Header ~ Matching vector name at table position 98.8 %
EZ;&'[‘::“I (@ Reference Manual vs. Matching peripheral, register, or bit field name gg"; Z/:
Bit Field (® Header vs. () SVD at byte or bit address after majority voting 059%
All Datasets All Sources Weighted average over all data points 96.5 %

Overall, the machine-readable data is very accurate with 96.5% match at 5.9
million data points.

As a result, | would not use the PDF or the CMSIS-SVD files as primary data
sources unless necessary.

Extract as much as possible from the CubeMX database and CMSIS headers
instead.

data.modm.io : Data Interface

(CMSIS-SVD
CMSIS Header

1

]

H HTML :

Internal | External

. 1

1

1

1

Jﬂ Python }7Cypher4b{ Kuzu —CypheVAD{ modm}

Open Pin Data
CubeHAL 1
' Knowledge
1 Graphis the
CubeProg 1 Interface!
1
1
1
1

So the question is how to we make this data accessible?

We have a highly heterogeneous dataset, which includes clock graphs, so why
not use a graph database?

The graph database then also acts as the interface to the external world.

Knowledge Graph as Interface . kUZU

Kuzu Embedded Database

« Perfect for heterogeneous dataset like hardware description.
« Implements Cypher Query Language for many languages. °
« Serialization into sorted plaintext allows trivial archiving. g

« Simple to install and use: pip install kuzu

RETURN pi.name, po.position, pe.name, s.name, af.index;

pi.name po.position | pe.name | s.name | af.index
STRING STRING STRING STRING UINT8

PAQ/WKUP | N3 ETH CRS 11
PH2 K4 ETH CRS 11
PAQ/WKUP | N3 TIM1 CH1 1

O

kuzu> MATCH (:Package)-[po:hasPin]->(pi:Pin)-[af:hasAlternateFunction]->(s:Signal)<--(pe:Peripheral)

| chose Kuzu, which is a small and fast embedded graph database that
implements the Cypher language.

It's easy to install and use and comes with many language bindings: C/C++,
Rust, Python, Web Assembly.

You can see a part of the schema on the right and a cypher query at the bottom
showing alternate functions.

The query returns a table which you can then use to generate code.

http://data.modm.io

There a browser based explorer tool including graph visualization.

Here you can see the package node, surrounded by all the pins and their
corresponding signals.

This is a bit chaotic

Knowledge Graph as Interface

MATCH p=(:Peripheral)-->(:Signal) RETURN p

We can also query only a part of the graph, like specific relations.
Here we query all relations between peripherals and signals.

-@ “";O
o-0-0
s
(-] /
N Qm‘@@
Q@ —@ i @ 2 @
Voo 089
e 100 TP 0
O @0 ¢
)) But there are also many other things you can do with this code.
Pacp';am?f andeout Shenanigans For example REGEX your alternate functions!
B’ %3 pip install stm layout This is a smol TUI tool based on the CubeMX database, here showing all the

PF2

o
‘ ADC_IN

Alternate Additional Functions——

U Functions-
1 @: 1251 SD/SPT1_MOST
] 1: USART2_TX

1

1

1 |

1 5: TIMIS_CH1 UCPDI_FRSTX2
1

]

1

]

1

1

]

1

]

1

pins that have an ADC input signal.

Package and Pinout Shenanigans

STM32H743VIH6

PC14 PC13 PE2 PB4 PB3 PALS PAL4 PAI3
PC15 VBAT PE3 DS PC11 PC10 PA12

PHO. Vss PE4 PEL PBS
PH PES PEQ 800TO

VoD
NRST PC2_C PEG vss

PCo 3 PC3_C VODLDO VDD
VSSA PAD PAY pCa PB2
VDDA PAL PAS PCS PE7
vss. PA2 PAG PBO PES
VoD PA3 PAT PB1 PE9

Pin Info Alterna
Name: PB7] o
Pos: AS ISRt

Config: Custom o2
ode: GP1 [3:
PO

[x] Alternat [s:

Analog
Speed: [] Low L7
[] ted (18
[x] High [l o
[] Very High 11 10:
Type: [] Push-Pull [t
[x] Open-Drain 0112
Resistor: [] None [EE]
[x] Pull-Up (114
(] Pult-Down 0] 1s:

PD2
PD6 PD3 PC12 PAY PAIL
PD: P

7 PD4 PDO A10
55 VCAP PD1 PC7
VDD33_USB PDR_ON VCAP PC8 PCE

PE10 PE14 PD15 PD11 PB1S

PE1L PE15 PD14 P10 PB14

TIMI7_CHIN
TINg_CH2
HRTIM_EEVO

+ USARTI_RX
+ LPUARTI_RX

: DFSDM1_CKINS

FMC_NL
: DCWI_VSYNC

Additiona
PWR_PVD_IN

1 Functions

This also works for BGA pins, here searching for all pins with 12C data and clock
signals.

This is very useful to quickly find alternate functions, since the CubeMX gui is
not great for searching like this.

%%

Memory Map Shenanigans

if target.family in ["ce", "go"]
RCC->APBENR2 |= RCC_APBENR2_SYSCFGEN; __DSB();
elif target. 0"

2ENR_SYSCFGCOMPEN; __DSB();
1

2ENR_AFIOEN; _ DSB();
70

J4ENR_SYSCFGEN; __DSB();

eeeeeeeeee

.family = "us"
RCC->APB3ENR |= APB3ENR_SYSCFGEN; __DSB();
else
RCC->APB2ENR | = RCC_APB2ENR_SYSCFGEN; _ DSB();
endif
if

__DSB();
'g0 ue"]
NR1_| ; __DSB();

if target.family in ["gd", "14", "15"]
RCC->APBIENR1 |= RCC_APBIENRI_PWREN; _DSB();
elif target.family == "u5"
RCC->AHB3ENR |= RCC_AHB3ENR_PWREN; _ DSB();
ndi

s endif

%% if regs.set("RCC",

{{regs.result}}
s endif
%% if regs.set("RCC",

{{regs.result}} __DSB();
s endif
%% if regs.s

{{regs.result}}
s endif

target. family = "f1"
RCC->APBIENR |= RCC_APBIENR_PWREN | RCC_APB1ENR_BKPEN; __DSB();
wgh, ME3n, Thggn WE7M. T, 11%]

"APB\d?ENR\d?", "SYSCFG.*?EN|AFIOEN")

"A[HP]B\d?ENR\d?", "(?:PWR|BKP)EN")

et("PWR", ".x?7", "DBP")

Why not simply™
regex your
register map?

RCC->APB2ENR |= RCC_APB2ENR_SYSCFGEN;

RCC->APB1ENR |= RCC_APBL1ENR_PWREN; _ DSB();

PWR->CR |= PWR_CR_DBP;

| apologize to your eyeballs. This is code from modm.

modm uses Python Jinja templates to generate startup code, where we need to
enable the clock to the system config and power peripherals.

And it's very annoying since the bit is in different registers depending on the
family.

#it#

So instead, why not just regex the register?

#Hi##

This abomination actually works really well...

More Use Cases
Everything is a Query when a

Il you have is Data

* Modularize and generator your own HAL much easier.

« HTML version of pinout and clock configurator. No more CubeMX.

« Optimizing constraint solver for pinout and clock limitations.

« Diffing HTML versions of Datasheets and Reference Manuals.

* Much more accurate CMSIS-SVD files from the CMSIS Header + PDF.

« Testing Al models against PDF-to-HTML-to-Knowledge-Graph pipeline.

There are many more use cases that | didn't go into.

A nice one would be to create a simpler CubeMX application as a HTML page,
something that can configure and generate code for other HALSs.

You can apply a SAT solver to the database of course to solve design
constraints and help with parts selection.

You can now diff PDFs via the HTML version.

And you can generate much more accurate SVD files than the official ones.

If you think your Al model can do better, I've basically built you a benchmark.
BEWARE.

Conclusion
and Future Work

+ STMicro publishes several machine-readable data sources on GitHub!
« Parsing machine-readable data sources is easy and very accurate.
« Parsing PDF/HTML is difficult due to typos and formatting mistakes.

+ modm-data: PDF2HTML works well, rest is "academic" code quality.

« Knowledge Graphs are a good database for heterogenerous data sets.

« Documentation and discoverability of Knowledge Graph Ontology is difficult.

There's a lot of machine-readable data on GitHub, it needs to be put in a good
database. Knowledge graphs are still pretty niche.

Parsing PDFs is hard because of humans, rather than accessing the PDF. Some
fuzzy matching required.

The PDF2HTML pipeline works really well in modm-data, the rest needs to be
rewritten.

Data Mining Hardware Descriptions

Questions?

Niklas Hauser likes data science.

Homepage: salkinium.com
Fediverse: @salkinium@chaos.social
Code: github.com/salkinium

Thesis: salkinium.com/master.pdf

Paper: salkinium.com/hp23.pdf (peer-reviewed!) data.modm.io

GitHub: github.com/modm-io/modm-data

If you want to know more details, including citations, check out master thesis
and my peer-reviewed paper.

All the code is public and somewhat documented.

Do you have Questions?

https://salkinium.com
https://chaos.social/@salkinium
https://github.com/salkinium
https://salkinium.com/hp23.pdf
https://github.com/modm-io/modm-data
https://data.modm.io
https://salkinium.com/master.pdf

