
Niklas Hauser
Senior Embedded Software Engineer

Debugging PX4
with GDB and Python

Thank you for the introduction.

Thanks to the conference organizers for the opportunity to talk here.

Who?
Hello, my name is Niklas and I like microcontrollers

roboterclub.rwth-aachen.de

'10

modm.io

'13

salkinium.com/elva

'18

'15

uVisorPX4 Autopilot

'23

My name is Niklas.

- I started studying Computer Science some time ago.

- I began building autonomous robots in 2010.

- We created a C++ library which is known as modm.io, a C++23 library

generator that supports 3700+ Cortex-M devices.

- I then started at ARM working on Cortex-M sandboxing, before returning to

the university to study for my masters degree.

- There, I worked on a digital modular signalling system for railways.

- I finished my masters degree and now work at Auterion debugging the open-

source PX4 Autopilot for commercial drones.

Why?
PX4 Autopilot runs on NuttX

• Full RTOS with peripheral drivers, extensive
filesystem and communication protocols.

• Many external sensors and components.

• Often subtle bugs that only manifest
heuristically under the right conditions.

• Complex code base: 2MB binary, 6 months
to get up to speed while building tooling.

• Very fast STM32H7 (480MHz) can easily
overwhelm debug logging options.

[Skynode]

In particular, I'm debugging the Skynode, which contains a Linux system and a
flight management unit, which runs on the PX4 Autopilot software.

- PX4 is based on the NuttX RTOS which is complex and has some subtle bugs

now and then.

- My job is to debug and improve PX4 and NuttX.

- Difficult because large code base and fast processor, which limits printf

http://roboterclub.rwth-aachen.de
http://modm.io
http://salkinium.com/elva

debugging.

- I want to share some of the tools I wrote over the last few months to help me

debug PX4.

What?
Microcontrollers are Embedded Systems

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0
 M

H
z

(m
a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it

A
X

I
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2
 (

2
0
0
M

H
z)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4
 (

2
0
0
M

H
z)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4
 (

2
0
0
M

H
z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
(m

a
x)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0
 M

H
z

(m
a
x)

A
P

B
4

 1

0
0
 M

H
z

(m
a
x)

A
P

B
4

 1

0
0
 M

H
z

(m
a
x)IWDG

Temperature
sensor

HASH

3DES/AES [DS12556]

• CPU connected via internal busses to memory and peripherals.

• Programmable, highly flexible real-time capabilities and data processing.

• Typically runs barebone or real-time OS.

This talk is about microcontrollers, specifically with the ARM Cortex-M
architecture.

Microcontrollers contain a microprocessor, here a Cortex-M7 in light green on
the left, connected via a bus system in gray to non-volatile memories, like Flash,
and volatile memories like SRAM (yellow), as well as a number of special
purpose peripherals.

Peripherals can be internal, like the Random Number Generator (RNG) down
here,

or external, like the Ethernet MAC up there which connects over Media
Intependent-Interface (MII) to an external PHY via the microcontroller pins.

The CPU itself can be debugged using the Serial Wire Debug connection here
on the left.

GDB? The GNU DeBugger
arm-none-eabi-gdb with Python 3 support

• GDB is part of the official arm-none-eabi distribution based on GCC 12.

• ARM builds GDB without Python 3 support !!!

• Download the xPack arm-none-eabi-gcc12 toolchain instead.

• BUT: only symlink arm-none-eabi-gdb-py3 into your path.

• arm-none-eabi-gdb-py3 has a stand-alone Python 3.11 runtime!

• GDB usually works fine with debug symbols from any compiler.

- GDB is the debugger that comes with your arm-none-eabi toolchain

- ARM provides an official and tested version, use that one for compilation.

- But the GDB is not compiled with Python3 support.

- So you need to install the xPack version, but only symlink the GDB, not the

rest

- Alternatively use the GDB from your distribution at your own risk.

How to start a GDB session
using a OpenOCD debug probe

1. Launch OpenOCD with your target configuration: 
openocd -f board/nucleo_f429zi.cfg -c "init"

2. Launch GDB with the firmware ELF file and connect to the GDB server: 
arm-none-eabi-gdb-py3 -ex "target extended-remote :3333"
firmware.elf

3. ctrl-c and continue: halt and run execution on microcontroller.

4. step, next, finish: step into/over/out of statements/instructions.

5. backtrace: show where you are.
Please consult the 

GDB tutorials online!

Let's go over the basics of how to launch a GDB debug session.

- Connect the debug probe to the microcontroller, make sure it has power

- Launch OpenOCD with the correct target configuration and issue the init

command

- Launch GDB from another process with the ELF file that contains the debug

symbols and connect locally

- Note that you can also pass an IP with the port if you need to debug over the

local network.

- Super basic commands are: ctrl-c for interrupting execution.

- GDB has now HALTED the CPU, while you debug.

- Be careful what you debug, drones tend to fall out of the sky if the Avionics

fail.

- You can single step through your code.

- And you can show where you are with the backtrace command.

There are many GDB tutorials online, please refer to them if you're a beginner.

Remote Debugging
One does not simply connect into Cortex-M

GDB

TCP

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0
 M

H
z

(m
a
x
)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it

A
X

I
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1

 (
2

0
0

M
H

z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2
 (

2
0
0
M

H
z)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4
 (

2
0
0
M

H
z)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4
 (

2
0
0
M

H
z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4

 (
2

0
0

M
H

z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
 (

m
a

x
)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0
 M

H
z

(m
a
x
)

A
P

B
4

 1

0
0
 M

H
z

(m
a
x
)

A
P

B
4

 1

0
0
 M

H
z

(m
a
x)IWDG

Temperature
sensor

HASH

3DES/AES

ARM Cortex-M

GDB Server

USB

(OpenOCD, J-Link)

GDB/MI

IDE

SWD

Debug Probe

(STLink, J-Link)

Debugging microcontrollers requires some extra steps.

- You need to connect the Serial Wire Debug (SWD) signals to a hardware

debug probe

- For example a J-Link or a STLink

- The debug probe then communicates over USB to the driver software

- Typically this is OpenOCD or JLinkGDBServer

- Which implements the GDB server protocol

- GDB connects to the GDB Server via TCP

- You can already debug now using the GDB command line

- Most IDEs wrap the debug functionality

- Communicate with GDB using the Machine Interface

- MI is an ASCII protocol for communicating with GDB as a User Interface

GDB Python API
for custom debugger plugins

• Import GDB and Python scripts with the source script.py command.

• import gdb is implemented directly in GDB using the CPython API!

• Python API cannot write variables! gdb.execute("set var = 1")

• Python API does not expose C preprocessor defines! No workaround.

• Python API is language-independent and lacks best practice examples.

• C/C++ type system horseshoed into duck-typed Python syntax?

Please consult the GDB 

Python API Docs online!

GDB has it's own script language, but it's quite limited.

To extend GDB a Python API exists:

- You can source Python scripts inside GDB

- The gdb module only exists inside GDB you cannot call it from outside, it

directly interfaces with the C API

- There are some limitations:

- You cannot write variables, you must do this via the GDB scripting
language

- You cannot access all the debug information, some stuff is missing
like C preprocessor macros. A big issue for knowing the NuttX
configuration.

- Very well documented at API level, but how to use it to do non-trivial
things is fairly unclear. I had to read source code to figure out what
the limitations are.

- language independent API can be a bit wonky for C/C++ semantics

So I wrote a bunch of tools and plugins for GDB for NuttX.

Embedded Debug Tools: emdbg
a modular toolbox for scripting GDB

• pip install emdbg

• Fully open-source: https://github.com/auterion/embedded-debug-tools

• Instructions are on GitHub and API docs via pdoc emdbg

• Specific for PX4+NuttX+STM32, but intentionally modular so you can hack it.

• You are very welcome to contribute, I'm actively maintaining this project!

All tools in this talk are from emdbg!

reference to module: [emdbg.analyze.calltrace]

All tools in this talk are available as an open-source project called the
Embedded Debug Tools.

Python3 library, BSD licensed, fully open-source on GitHub with lots of
documentation.

It's highly modular so you can reuse it, even though the higher level tools are
STM32/PX4/NuttX specific

Actively maintained, feel free to contribute or just use it as a reference, you can
also ask questions there.

The reference at the bottom right refers to the python module.

Ok, let's look at some simple GDB tools to start.

Inspecting NuttX tasks
with PX4 extensions for CPU usage

(gdb) px4_tasks

 PID NAME %CPU USED/STACK STATE WAITING FOR 
 0 Idle Task 30.5 354/ 726 RUN 
 3 init 0.0 2348/ 3080 w:sem 0x2007dbe0 
 634 wq:uavcan 1.5 1692/ 3624 w:sem 0x20003a00 
 699 wq:SPI3 7.2 1336/ 2336 w:sem 0x20005460 
 718 wq:I2C4 0.4 912/ 2336 w:sem 0x2000fd80 
 830 wq:nav_contr 4.1 1276/ 2280 w:sem 0x2000c300 
 840 wq:rate_ctrl 7.7 1492/ 3152 w:sem 0x20016420 
 842 wq:INS0 11.4 4252/ 6000 w:sem 0x200190a0 
 847 commander 1.5 1244/ 3224 w:sig signal 
1557 logger 0.4 2556/ 3648 w:sem 0x2003f200

[emdbg.debug.gdb#px4_tasks]

NSH shows  

this via top!

NuttX is a RTOS with preemptive threads, PX4 uses a lot of threads.

Here I've created our first GDB Python tool: px4_tasks

it lists all the threads with their PID, name, CPU and stack usage, and most
importantly what it's waiting for.

NuttX has a similar tool, but PX4 has an external CPU usage monitor, so we
implement our own.

Custom GDB User Commands
NuttX not supported by GDB/JLink/OpenOCD

class PX4_Tasks(gdb.Command):

 def __init__(self):

 super().__init__("px4_tasks", gdb.COMMAND_USER)

 def invoke(self, argument, from_tty):

 print(px4.all_tasks_as_table(gdb))

1. Find task list: gdb.lookup_global_symbol("g_pendingtasks")

2. Directly read task state: tcb["name"].string()

3. Indirectly compute the rest: Search for stack watermark, find CPU time, …

=> Easier to implement fully in GDB than via RTOS plugin of debug probe.
[emdbg.debug.gdb#px4_tasks]

This is implemented as a custom GDB user command.

- GDB can lookup symbols in various scopes.

- NuttX uses a so called ready list of tasks that are runnable.

- We find that in SRAM and then iterate over each task struct.

- There are simple attributes of the struct that we can directly access

- Others need some more code like a binary search to find the stack

https://github.com/auterion/embedded-debug-tools

watermark, look at timers to figure out CPU time etc

- So, complexity can be a scaled up or down

Inspecting Interrupt State
NuttX intercepts NVIC to implement IRQs

(gdb) px4_interrupts

IRQ EPA P ADDR = FUNCTION ARGUMENT 
-13 -1 0x80220c4 = arm_hardfault 
 -5 e 0 0x802221c = arm_svcall 
 -1 e 80 0x8011efc = stm32_timerisr 
 11 e 80 0x800936c = stm32_dmainterrupt 0x20020740 <g_dma> 
 12 e 80 0x800936c = stm32_dmainterrupt 0x20020758 <g_dma+24> 
 27 80 0x816b0f8 = io_timer_handler0 
 31 e 80 0x816826a = stm32_i2c_isr 0x20020b44 <stm32_i2c1_priv> 
 37 e 80 0x8008dd4 = up_interrupt 0x200203a0 <g_usart1priv> 
 40 e 80 0x8167df8 = stm32_exti1510_isr 
 59 e a 80 0x800936c = stm32_dmainterrupt 0x20020848 <g_dma+264> 
 65 ep 80 0x81300a4 = can2_irq 
103 e 80 0x816cf64 = stm32_sdmmc_interrupt

[emdbg.debug.gdb#px4_interrupts]

Another example, NuttX implements its own dynamic interrupt dispatcher in
assembly.

Therefore every interrupt handler is the same function, not very useful for
debugging.

This small tool finds the NuttX dispatch table and renders it.

You can also see the priority (all the same, NuttX doesn't support nested
interrupts)

and whether the interrupt is enabled, pending, or active.

Here the IRQ 59 DMA is active, and IRQ 65 is pending, so it'll be next.

Super useful to figure out what functions to put a breakpoint on.

Inspecting GPIO State
Reading peripherals directly

(gdb) px4_gpios

PIN CONFIG I O AF NAME FUNCTION 
A0 AN ADC1_IN0 SCALED_VDD_3V3_SENSORS1 
A3 IN _ USART2_RX USART2_RX_TELEM3 
A5 ALT+H ^ 0 SPI1_SCK SPI1_SCK_SENSOR1_ICM20602 
A6 IN ^ SPI6_MISO SPI6_MISO_EXTERNAL1 
A8 IN+PU ^ TIM1_CH1 FMU_CH4 
A9 IN+PD _ USB_OTG_FS_VBUS VBUS_SENSE 
A11 ALT+VH _ 0 USB_OTG_FS_DM USB_D_N 
A12 ALT+VH _ 0 USB_OTG_FS_DP USB_D_P 
A13 ALT+PU+VH _ 5 SWDIO FMU_SWDIO 
A14 ALT+PD ^ 0 SWCLK FMU_SWCLK 
A15 OUT ^ ^ SPI6_nCS2_EXTERNAL1

[emdbg.debug.gdb#px4_gpios]

We also have some STM32 specific tools.

I often need to know the state the microcontroller pins, so this tool shows them
to me.

You can see the pin name, the Configuration, the input and output state, the
alternate function, and signal names and function.

- For example, the pin A6 and A8 are inputs with a pullup, both currently high.

- Pin A13 and A14 are the SWD connection, we can see that their are interally
connected via the alternate function. The data connection is also configured for
Very High datarate (VH).

But of course this is a custom implementation that manually interprets the

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0
 M

H
z

(m
a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it

A
X

I
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1
 (

2
0
0
M

H
z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2
 (

2
0
0
M

H
z)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4
 (

2
0
0
M

H
z)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4
 (

2
0
0
M

H
z
)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4
 (

2
0
0
M

H
z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
(m

a
x
)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0
 M

H
z

(m
a
x)

A
P

B
4

 1

0
0
 M

H
z

(m
a
x)

A
P

B
4

 1

0
0
 M

H
z
 (

m
a
x
)IWDG

Temperature
sensor

HASH

3DES/AES

Inspecting GPIO State
Debugger can access anything that's on the bus!

Well, how does this work?

The debugger can not only access the internal SRAM, but also every other bus:

It first goes through the internal 64-bit bus matrix

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0
 M

H
z

(m
a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it

A
X

I
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1
 (

2
0
0
M

H
z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2
 (

2
0
0
M

H
z)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4
 (

2
0
0
M

H
z)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4
 (

2
0
0
M

H
z
)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4
 (

2
0
0
M

H
z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
(m

a
x
)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0
 M

H
z

(m
a
x)

A
P

B
4

 1

0
0
 M

H
z

(m
a
x
)

A
P

B
4

 1

0
0
 M

H
z
 (

m
a
x)IWDG

Temperature
sensor

HASH

3DES/AES

Inspecting GPIO State
Debugger can access anything that's on the bus!

then goes through another 32-bit bus matrix before finally accessing the register
file of the GPIO peripherals.

Inspecting GPIO State
Consulting the Reference Manual

For this to work I need to know the exact address of the GPIO peripheral, which
I can find in the STM32H7 reference manual.

I also need to interpret the bits inside the register, which I can also find in there.

I then wrote a short Python script that iterates over each pin and converts the
bit fields to the table you just saw.

ok, but I cannot write a custom parser for every peripheral, wouldn't it be nice if
we had a machine-readable register description?

Inspecting Any Peripheral
using System View Description (SVD) files

• CMSIS-SVD files describe the registers in a standardized XML format.

• Intended for debuggers, IDEs, and code generators for language bindings.

• Available from vendors with varying completeness, resolution, and quality.

• STM32 SVD files are problematic, patches available from stm32-rs project.

• pengi/arm_gdb provides a GDB plugin to read registers on device via SVD.

• emdbg just wraps this tool and adds a difference viewer.

[emdbg.debug.gdb#px4_pshow]

So instead we are using the System View Description files to automatically
interpret peripherals.

SVD files are a standardized XML format that describes the register maps, so I
don't have to copy it out of the PDFs.

The STM32 SVD files are a little broken, there are manual patches available.

There is a great GDB plugin from pengi that does the heavy lifting for you, it
loads the SVD file and tells the debug probe to read the right memory and
converts this into a structured form.

emdbg just wraps this tool for convenience.

Inspecting Any Register
using System View Description (SVD) files

(gdb) px4_pshow DMA2.S0CR

DMA2.S0CR = 0000010001010100 // stream x configuration register 
 EN 0 - 0 // Stream enable / stream ready 
 DMEIE 0. - 0 // Direct mode error interrupt enable 
 TEIE 1.. - 1 // Transfer error interrupt enable 
 HTIE 0... - 0 // Half transfer interrupt enable 
 TCIE 1.... - 1 // Transfer complete interrupt enable 
 PFCTRL 0..... - 0 // Peripheral flow controller 
 DIR 01...... - 1 // Data transfer direction 
 CIRC 0........ - 0 // Circular mode 
 PINC 0......... - 0 // Peripheral increment mode 
 MINC 1.......... - 1 // Memory increment mode 
 PSIZE ...00........... - 0 // Peripheral data size 
 MSIZE .00............. - 0 // Memory data size

[emdbg.debug.gdb#px4_pshow]

Here we're looking at the DMA2 stream 0 configuration register.

You can see the raw register value and then below all the bitfields with the name
and description

This is very helpful for a quickly checking the configuration of a peripheral
without manually unfiddling the bits.

You still need to check the reference manual for the larger picture.

Visualizing Register Differences
using hardware watchpoints and SVD files

[emdbg.debug.gdb#px4_pwatch]

We can also use this in combination with hardware watchpoints.

The device itself watches a memory region for writes and then triggers a
breakpoint.

For example here I can see what code actually writes to this Stream 0 register,
and what the differences were.

You can also see the backtrace here, which shows that the SDCard driver from
before is calling the DMA driver.

However, on Cortex-M7 the write may be delayed relative to the execution, so it
doesn't always show the right location. In NuttX, all register access are typically
done via a function, onto which you can set a breakpoint instead. Also DMA
writes in the background may result in weird backtraces.

Program received signal SIGTRAP, Trace/breakpoint trap. 
=> 0x08008208 <exception_common+0>: ef f3 05 80 mrs r0, IPSR

(gdb) arm scb /h 
CFSR = 00008200  
 BFARVALID 8... - 1 
 PRECISERR 2.. - 1 
BFAR = 00000008

(gdb) backtrace 
#0 exception_common () 
#1 <signal handler called> 
#2 inode_insert (parent=0x0, peer=0x0, node=0x2007c010)

(gdb) frame 2 
117 node->i_peer = parent->i_child; 
=> 0x0800adf4 <inode_reserve+108>: a3 68 ldr r3, [r4, #8]

HardFault Debugging
using GDB with vector catch in DEMCR

[emdbg.debug.gdb#debugging-hardfaults]

BusFault at 

address 8!

Backtrace works 

beyond exception!

Loading  

r4=0 + 8

HardFault 

triggered

We can also investigate hardfaults while debugging using the SVD files:

We enable the vector catch bits to trap all fault exceptions and then the device
halts before the NuttX interrupt dispatcher breaks the backtrace.

You can inspect the fault registers via the SVD plugin: here it's a precise bus
fault at address 8.

The backtrace is intact, so we can find the exact location.

Here, the parent pointer is zero, thus the load + 8 fails.

Coredumping
using SVD files and CrashDebug

[emdbg.debug.crashdebug] [emdbg.debug.gdb#px4_coredump]

CrashDebug
File TCP

GDB Server

Coredump
Memory + Peripherals

• GDB dumps all volatile memory, registers and SVD peripherals into a file.

• ELF file provides non-volatile memory and debug symbols.

• adamgreen/CrashDebug presents memory as a GDB Server.

• PX4 HardFault log can also be used as coredump for post-mortem analysis.

• Great for sharing full device state with remote engineers for pair debugging!

Related to hardfaulting is coredumping support.

Not natively implemented, so we need to do it ourselves:

read out all volatile memory like SRAM and peripherals and store them in a file.

We also use the SVD files to read out the peripherals as well and then all
peripheral tools like the GPIOs tool also works.

The CrashDebug utility from Adam Green then pretends to be a GDB server and
serves the memory.

Works really well for post-mortem debugging of hardfaults to get a backtrace
and reason for the fault.

This also works with PX4 hardfault logs!

Scripting GDB and NSH
for automated bug reproduction

[scripts/out_of_memory_fuzzer.py]

with emdbg.bench.fmu(px4_dir, target, nsh) as bench:

 for ii in range(10_000):

 bench.gdb.execute("px4_reset")

 # fail malloc on n-th call

 bench.gdb.execute(f"set malloc_fail_count = {ii}")

 if bench.gdb.continue_wait(timeout=3):

 # hardfault occurred, where is it?

 log += bench.gdb.execute("arm scb /h")

 log += bench.gdb.execute("backtrace")

 else:

 # no hardfault occurred, good!

 bench.gdb.interrupt_and_wait()

 log += bench.nsh.read()

Automatically 

fails the first 

10k mallocs

If HardFault, 

log reason, 

backtrace, 

NSH output

otherwise 

check for 

error message

I've also implemented a basic GDB/MI interface, so that you can create scripts
with GDB and NSH interaction.

Here we systematically fail the n-th malloc call to see what code does not check
the returned pointer for NULL.

If the vector catch works, then we can print the fault registers and the
backtrace.

Otherwise we read the NSH output, since there may be an error log.

We then convert the backtraces to a call graph.

What if malloc fails?
Generate a call graph of hardfault locations

We visualize the call graph using graphviz, to show were all the hardfault
locations are.

We already know about inode_insert, but there are a bunch of NULL pointers
passed to memset in uORB.

Much easier to test and fix OOM conditions with GDB scripting.

All of there tools are running, while the CPU is halted. What if you cannot halt
the CPU? Let's talk about profiling!

Profiling via Logging
aka printf debugging

• Output logging messages over UART or logged to non-volatile memory.

• Use USB-Serial adapter to see log and then post process it.

• Ubiquitous and very effective, lots of existing libraries for it.

• Very invasive, you need to add non-trivial amounts of code for logging.

• Still extremely valuable tool for narrowing down the issue area.

• Often very slow compared to event rate, way too slow for real-time.

The simplest profiling method is logging, usually over Serial link.

It's very low-cost, very effective and everyone uses it.

And it is of course a necessary tool to get an idea of what went wrong.

But it's waaaaay to slow for our processor (480MHz).

A lot of events.

Real-time Profiling
via NuttX task trace system

• Built-in trace system via hooks.

• Scheduler, system calls, interrupts.

• Requires functioning NuttX system.

• On-device with significant overhead!

• TraceCompass 
renders the data.

• Open-Source and 
crashes on macOS

NuttX has a built-in task trace system.

It logs events to RAM and then to a file.

But it renders very nicely in TraceCompass.

Unfortunately TraceCompass crashes on ARM64 macOS.

It also runs on-devices, so it modifies timings and uses CPU time and program

MSv50638V4

TT-FDCAN1

FDCAN2

I2C1/SMBUS

I2C2/SMBUS

I2C3/SMBUS

AXI/AHB12 (200MHz)

4 compl. chan. (TIM1_CH1[1:4]N),
4 chan. (TIM1_CH1[1:4]ETR, BKIN as AF

A
P

B
1

3
0

M
H

z

TX, RX

SCL, SDA, SMBAL as AF

A
P

B
1

 1

0
0
 M

H
z

(m
a
x)

MDMA

PK[7:0]

4 compl. chan.(TIM8_CH1[1:4]N),
4 chan. (TIM8_CH1[1:4], ETR,

BKIN as AF

RX, TX, SCK, CTS, RTS as AF

SCL, SDA, SMBAL as AF

SCL, SDA, SMBAL as AF

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

TX, RX

RX, TX as AF

RX, TX as AF

RX, TX, SCK
CTS, RTS as AF

RX, TX, SCK, CTS,
RTS as AF

1 channel as AF

smcard

irDA

1 channel as AF

2 channels as AF

4 channels

4 channels, ETR as AF

4 channels, ETR as AF

4 channels, ETR as AF

RX, TX as AF

FIFOLCD-TFT

FIFO
CHROM-ART

(DMA2D)

SD, SCK, FS, MCLK, D/CK[4:1] as
AF F

IF
O

LCD_R[7:0], LCD_G[7:0],
LCD_B[7:0], LCD_HSYNC,

LCD_VSYNC, LCD_DE, LCD_CLK

CLK, CS,D[7:0]

6
4

-b
it

A
X

I
B

U
S

-M
A

T
R

IX

CEC as AF

IN[1:4] as AF

MDC, MDIO

AXIMAXIM

Arm CPU
Cortex-M7
480 MHz

AHBP

AHBS

TRACECK

TRACED[3:0]

JTRST, JTDI,

JTCK/SWCLK

JTDO/SWD, JTDO

JTAG/SW

ETM

I-Cache
 16KB

D-Cache
 16KB

I-TCM
 64KB

D-TCM
 64KB

16 Streams
FIFO

SDMMC1

SDMMC_D[7:0],SDMMC_D[7:3,1]Dir
SDMMC_D0dir, SDMMC_D2dir

CMD, CMDdir, CK, Ckin,
CKio as AF

FIFO

DMA1

FIFOs
8 Stream

DMA2

FIFOs

ETHER
MAC

FIFO

SDMMC2

FIFO

OTG_HS

FIFO

OTG_FS

FIFO

SRAM1
128 KB

8 Stream

FMC_signals

DMA/ DMA/ DMA/

PHY PHY

MII / RMII
MDIO

as AF

DP, DM, STP,
NXT,ULPI:CK
, D[7:0], DIR,

ID, VBUS

A
H

B
1
 (

2
0
0
M

H
z
)

ADC1

DAC_OUT1, DAC_OUT2 as AF

16b

AXI/AHB34 (200MHz)

JPEGWWDG

A
H

B
2
 (

2
0
0
M

H
z
)

AHB2 (200MHz)

PA..J[15:0]

HSYNC, VSYNC, PIXCLK, D[13:0]

SAI3

MOSI, MISO, SCK, NSS as AF

MOSI, MISO, SCK, NSS as AF

smcard
irDA 32-bit AHB BUS-MATRIX

A
H

B
4
 (

2
0
0
M

H
z
)

BDMA

DMA
Mux2

Up to 20 analog inputs
common to ADC1 & 2

HSEM

A
H

B
4
 (

2
0
0
M

H
z)

A
H

B
3

A
H

B
4

A
H

B
4

A
H

B
4

AHB4

A
H

B
4

VDDA, VSSA
NRESET

WKUP[5:0]

@VDD

RCC
Reset &
control

OSC32_IN
OSC32_OUT

VBAT = 1.8 to 3.6 V

AWU

VDD12 BBgen + POWER MNGT

L
S

L
S

OSC_IN

OSC_OUT

RTC_TS
RTC_TAMP[1:3]
RTC_OUT
RTC_REFIN

VDDMMC33 = 1.8 to 3.6V
VDDUSB33 = 3.0 to 3.6 V
VDD = 1.8 to 3.6 V
VSS
VCAP

@VDD

@VDD33

@VSW

P
W

R
C

T
R

L

A
H

B
4
 (

2
0
0
M

H
z
)

SUPPLY SUPERVISION

Int

POR

reset

@VDD

WDG_LS_D1

LPTIM1_IN1, LPTIM1_IN2,
LPTIM1_OUT as AF

OPAMPx_VINM
OPAMPx_VINP
OPAMPx_VOUT as AF

HRTIM1_CH[A..E]x
HRTIM1_FLT[5:1],

HRTIM1_FLT[5:1]_in, SYSFLT

DFSDM1_CKOUT,
DFSDM1_DATAIN[0:7],

DFSDM1_CKIN[0:7]

2 compl. chan.(TIM15_CH1[1:2]N),
2 chan. (TIM_CH15[1:2], BKIN as AF

1 compl. chan.(TIM16_CH1N),
1 chan. (TIM16_CH1, BKIN as AF

1 compl. chan.(TIM17_CH1N),
1 chan. (TIM17_CH1, BKIN as AF

SDMMC_
D[7:0],

CMD, CK as AF

Up to 17 analog inputs
common to ADC1 and 2

SD, SCK, FS, MCLK,
D[3;1], CK[2:1] as AF

SCL, SDA, SMBAL as AF

COMPx_INP, COMPx_INM,
COMPx_OUT as AF

LPTIM5_OUT as AF

D-TCM
 64KB

AHB/APB

Quad-SPI

128 KB
FLASH

512 KB AXI
SRAM

FMC

Delay block

DCMI
AHB/APB

HRTIM1

DFSDM1

SD, SCK, FS, MCLK, CK[2:1] as AF F
IF

O

SAI2

SD, SCK, FS, MCLK, D[3:1],
CK[2:1] as AF F

IF
O

SAI1

SPI5

TIM17

TIM16

TIM15

SPI4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI1/I2S1

USART6

RX, TX, SCK, CTS, RTS as AF irDA USART1

TIM1/PWM
16b

TIM8/PWM 16b

A
P

B
2

 1

0
0

 M
H

z
(m

a
x)

ADC3

GPIO PORTA.. J

GPIO PORTK

SAI4

COMP1&2

LPTIM5

LPTIM4_OUT as AF LPTIM4

LPTIM3_OUT as AF LPTIM3

I2C4

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI6/I2S6

RX, TX, CK, CTS, RTS as AF LPUART1

LPTIM2

VREF

SYSCFG

EXTI WKUP

CRC

DAP

RNG

DMA
Mux1

To APB1-2
peripherals

SRAM2
128 KB

SRAM3
32 KB

ADC2

AHB/APB

TIM6 16b

TIM7 16b

SWPMI

TIM2
32b

TIM3
16b

TIM4
16b

TIM5
32b

TIM12
16b

TIM13
16b

TIM14
16b

USART2

smcard

irDA
USART3

UART4

UART5

UART7

RX, TX as AFUART8

SPI2/I2S2

MOSI, MISO, SCK, NSS /
SDO, SDI, CK, WS, MCK, as AF

SPI3/I2S3

D
ig

ita
l filte

r

MDIOs

F
IF

O

1
0

 K
B

 S
R

A
M

RAM
I/F

USBCR

SPDIFRX1

HDMI-CEC

DAC

LPTIM1

OPAMP1&2

AHB/APB

XTAL 32 kHz

RTC
Backup registers

XTAL OSC

4- 48 MHz

HS RC

LS RC

PLL1+PLL2+PLL3

POR/PDR/BOR

PVD

smcard

Voltage
regulator

3.3 to 1.2V

LSI

HSI

CSI

HSI48

LPTIM2_IN1, LPTIM2_IN2 and
LPTIM2_OUT

AHB1 (200MHz)

DP, DM, ID,
VBUS

64 KB SRAM 4 KB BKP
RAM

A
H

B
4

32-bit AHB BUS-MATRIX

A
P

B
4

 1

0
0
 M

H
z

(m
a
x)

A
P

B
4

 1

0
0
 M

H
z

(m
a
x
)

A
P

B
4

 1

0
0
 M

H
z
 (

m
a
x)IWDG

Temperature
sensor

HASH

3DES/AES

Real-time Profiling
via SystemView or Tracealyzer

• Log to on-device ring buffer via API.

• Debug probe async reads ring buffer.

• Timestamps and serialization in software!

• Custom GUI 
renders the data.

• Proprietary with 
commercial license.

• Limited to debug 
probe bandwidth.

So, can we externalize the profiling?

Simple idea: log to ring buffer in SRAM and let the debug probe do the transfer.

This is the idea behind SEGGERs SystemView, which provides a library to
serialize RTOS events and timestamp it in software.

threads, scheduling, semaphores, interrupts.

BUT: It's proprietary and costs money and is not extensible.

And, still actually a fairly high overhead.

Real-time Profiling
ITM/DWT via SWO pin

• Log 8/16/32-bit values to 32 ITM channels, DWT traces exceptions. 
ITM->PORT[3] = 0xdeadbeef; simple, anything can be traced

• Hardware manages serialization, timestamps, and queues with priorities.

• Output ~3MB/s bitstream over dedicated SWO pin via J-Link or STLink.

• Orbcode is an open-source project to work with Cortex-M debug data.

• emdbg/ext/orbetto is a custom tool to convert ITM/DWT to ftrace packets.

[ext/orbetto]

Orbetto
SWO Protobuf

Cortex-M Perfetto

Wouldn't it be great if we could instead let the hardware do the serialization and
timestamping?

Well, this is exactly what the the built-in ITM and DWT peripherals do.

They provide 32 channels that you can write 8,16 or 32-bit values into and also
logs exception entry and exit.

The whole thing is implemented in hardware, so you only need to add a single
line statement to write to a ITM channel.

CPU overhead (<5%) only for waiting for space in the buffer, uses barely any
program space (~170B).

Serial Wire Output is basically a very fast UART. J-Link can read up to 3MB/s

Trace Visualization
via Perfetto UI

Try it online yourself: github.com/auterion/embedded-debug-tools => ext/orbetto

And this is then visualized by perfetto, which is actually meant to visualize
Android and Linux traces.

- At the top, you can see the CPU is multiplexing all the different threads, but
you can also see the interrupts just below. Note that is happening all within the
same millisecond, each tick is 100µs. NuttX schedules a lot, because it is an
RTOS!

- On the left you can the tasks with name and PID. PX4 has a lot of different
threads.

- We have a lot of work queues for all the sensors, which you can see when the
workqueue item is called but often the thread actually gets interrupted a lot.

This view is incredibly educational to see how an RTOS actually works.

Trace Visualization
via Perfetto UI

[ext/orbetto]

But it actually becomes more interesting if we zoom out, we can see some more
patterns.

Here every tick is 1ms.

You can see the sensors on the SPI busses getting read periodically.

https://github.com/Auterion/embedded-debug-tools/tree/main/ext/orbetto

Spotting Timing Issues
via Perfetto UI

[ext/orbetto]

And even further: here every tick is 100ms.

And suddenly we see a hickup: The I2C1 task is irregular, because there was a
power glitch and the sensors had to be reinitialized.

This kind of visual debugging with you eyes is incredibly fast to spot timing
issues.

Tracking Heap Usage
by logging every single malloc and free

[ext/orbetto]

You can really track *anything* over time.

For example, every malloc/free call, which helps you understand the heap
usage.

Here you can see a single malloc call with the requested size and the returned
pointer and allocated size including overhead.

By adding mallocs and subtracting frees, you can compute the total heap usage
over time.

I didn't find a good UI for this, but you could even analyze heap fragmentation
using this information.

Also create a histogram of allocation sizes for optimizing a binning block
allocator for your application.

Incredibly useful and it also makes you look like a wizard if you just whip this
out and show other people how PX4/NuttX works.

But SWO is still limited by bandwidth, so ARM provides you with even more
hardware.

Real-time Tracing
ITM/DWT/ETM via TRACE pins

• ETM can trace all instructions.

• High-bandwidth 4-bit output interface 
~1Gb/s requires FPGA and USB3

• J-Trace is ~2000€, ORBTrace is ~200€.

• ORBTrace mini is open-source! Go hack it!

• Outputs: compressed instruction stream. 
Missing: implicit data access, must use DWT.

• Code coverage, stack traces, timing analysis, 
branching information, complete RTOS state.

Parallel tracing gives you a 4-bit wide data bus up to 1Gbit/s in theory.

In addition to all the previous functionality, there is also a compressed
instruction trace, that allows you to reconstruct the program flow off device.

This requires custom FPGA hardware with a fast USB connection.

Does not give you data flow, you must still instrument your code via ITM for
that.

The J-Trace costs a lot of money.

The Orbtrace is open-source, so it's much more hackable, and its 10x less
expensive too.

There's a very helpful community around it, smart people work on this.

Go hack with it, particularly if you're new to tracing!

Derived information: Full stack traces, code coverage, timing analysis, complete
RTOS state, branching information.

Goal is to combine this with GDB scripting and automated testing in the CI.
Somehow.

Real-time Tracing
of the FMUv5x with the ORBTrace mini at 864Mb/s

FMUv5x ORBTrace mini

I got this working only last week, so this is what the latest state of the debug
tools development.

Here the Skynode FMU is connected to the Orbtrace to transfer around 864Mb/
s of debug information, which is great.

- On the left is the FMUv5x on the Auterion Skynode.

- One right right is the ORBTrace mini

- And in the middle is the 4-bit parallel TRACE connection. This required a
custom short cable to maintain the signal integrity, so that's why it looks so
hacky.

Real-time Profiling
Comparison

Profiling Aspect Logging
via Serial

Ring Buffer
via Debug Probe

ITM/DWT
via SWO

ITM/DWT/ETM
via TRACE

Serialization ASCII via printf 8-bit values 8/16/32-bit values 8/16/32-bit values

Multiplexing Manual Multiple queues 32 ITM channels +
DWT sources

32 ITM channels +
DWT/ETM sources

Timestamp Manual Manual Hardware cycle
counter from ITM

Hardware cycle
counter from ITM/ETM

Exceptions Manual Manual Any exception

entry/exit via DWT

DWT exceptions +
ETM instructions

Buffers Depends on

UART driver ≥1kB ring buffer 10B (!) hardware buffer 4kB hardware buffer

Speed ~11kB/s

(115200 baud) ≤4MB/s if using J-Link ≤3MB/s via SWO ≤133MB/s via TRACE

Overhead Very large Large Small Very small

External Support Cheap USB-Serial SWD debug probe Very fast USB-Serial ORBTrace or J-Trace

Using more specialized hardware for profiling is better, what a surprise!1!!

Future Work

• Add support for TraceCompass/Tracy since it has better analysis tools.

• Synchronize traces with logic analyzer captures via sigrok?

• Integrate parallel trace into emdbg for massive bandwidth increase:

• Complete call stacks and automated timing analysis on them.

• Extract all RTOS state via ITM: can we use Valgrind for analysis?

• Fuzzing guided by instruction trace: systematically inject failures.

In the future, I want to support TraceCompass or the Tracy Profiler, since it
contains better analysis tools than perfetto.

We also display logic analyzer traces in Perfetto for a better overview of what
happens outside the device.

Parallel trace needs to be integrated:

- Perfetto with full call stacks in real-time.

- Complete RTOS state: semaphores, spinlocks, critical sections, etc. in real-

time

- Use Instruction trace to guide american fuzzy lop in conjunction with logic

analyzer.

Conclusion

• Debugging and profiling are a very useful tools to have!

• Use GDB more to debug ARM Cortex-M! Script GDB with the Python API!

• Use the built-in debug hardware of ARM Cortex-M devices for profiling!

• Orbcode is an amazing project with a great community.

• Orbtrace is a fantastic deal for a trace probe! BUT: needs contributions.

• Please try out emdbg and give me some feedback.

So this is the end of the line, this is all the hardware and tooling I currently use
for debugging.

In conclusion: Debug all the things!

Use more GDB, use more debug hardware!

Test and contribute to the Orbcode project, play around with the Orbtrace.

They are looking for competent embedded people to liberate the debug tools
from commercial vendors!

Oh and also try out my embedded debug tools or maybe look at them for
inspiration.

Debugging PX4
A debugging session is active. Quit anyway? (y or n) y

Niklas Hauser: salkinium.com

Auterion: auterion.com

Orbcode: orbcode.org

emdbg: github.com/auterion/embedded-debug-tools

Thanks for your attention!

Thank you and do you have questions?

https://salkinium.com
https://auterion.com
https://orbcode.org
https://github.com/auterion/embedded-debug-tools

