
PX4 Device Manifest
Nov 2025 | Niklas Hauser & Alexander Lerach | Auterion AG

Who We Are

PX4 Device Manifest | Auterion AG

Niklas Hauser

3

PX4 Device Manifest | Auterion AG

Alexander Lerach

Vita

● Safe RTOS Cortex-M, PPC, TriCore, …)
● Embedded security
● PX4 embedded, manufacturing

PX4

● Everything low level (adding boards, drivers, FLASH/CPU usage optimization)
● Debugging/fixing NuttX H7 UART TX DMA getting stuck, …)
● Occasionally mavlink / uXRCEDDS client

4

Motivation

PX4 Device Manifest | Auterion AG

Bad case

Driver does not start:

● I2C interference: driver not robust.
● Power issues: cabling not robust.
● Component failures: sensor not robust.

⇒ Fallback to internal compass, thus silent failure!

The Problem

Good case

Driver starts normally:

● Device responded and successfully configured.
● uORB topic is published.
● Commander is happy.

⇒ Two sensor_mag (internal / external) topics.

6

PX4 Device Manifest | Auterion AG

The Cause

Opportunistic quiet driver starting

7

One-time or fixed-count probing

PX4 Device Manifest | Auterion AG

Solution Requirements

Ease of use

● Developers need to access the manifest data via CLI
● Integrators need to setup their airframe via the file system
● Pilots need to manage flight configuration via QGC

Configurable

● Need to encode different types of data for different drivers.
● Starting multiple drivers must allow for multiple instances of the same parameter type.

Lightweight

● Low resource usage: binary size and CPU utilization

Backward compatible

● Preserve as much of the existing user configuration as possible

8

PX4 Device Manifest | Auterion AG

Basic Idea

Let the user to state which drivers to start using a configuration system:

● Specify common communication settings: which I2C/SPI/UART bus id.
● Specify device specific settings: I2C address, rotation, sensor ranges, calibration.
● Specify multiple instances of settings when using multiple devices.
● Store these settings in non-volatile memory.

Can we use PX4 parameters for this?

● Already supported by MAVLink and DroneCAN transport protocols.
● GUI support in QGC, AMC, DroneCAN, and CLI support in NSH and airframe files.
● Widely used and known for storing setup specific configuration settings.
● BUT: inefficient use of metadata and storage, cannot instantiate multiple, limited types.

⇒ Autostart drivers based on instanced parameters and supervise their health!

9

Implementation

PX4 Device Manifest | Auterion AG

Parameter Structures

INA238 description:

uint4 p_version

Bus bus

uint10 current

float16 shunt

General bus description (Bus):

@union

I2c i2c

Spi spi

General I2C description (I2c):

uint4 p_version

uint4 bus_id

uint7 address

General I2C device description

11

Much more powerful parameter structure:

● Allow more types than int32, float, bitmask.
● Parameters can have any length.
● DSDL allows for reusable standard blocks.
● Encode a version for easier translation support.

User experience is improved:

● User configures attached hardware in QGC or
airframe files.

● PX4 now knows which drivers start.
● Arming depends on all expected drivers working.

PX4 Device Manifest | Auterion AG

Parameter Serialization

© DroneCAN development team

12

Using libcanard is much more efficient than libuavcan:

● Only need a small subset of the actual
functionality offered by libuavcan.

● Need to patch only one function (descattering).
● Smaller binary size due to not using C

templates for every type.

Use existing technology developed by DroneCAN

● Already have a DSDL, do not reinvent the wheel.
● Saves storage using packed bitfields.
● Allows to store complex composite data.
● Order of fields is preserved allowing prepending

new fields for easier translation.

PX4 Device Manifest | Auterion AG

Parameter Instances

The same parameters need to be defined multiple times
to start multiple drivers.

Instance is a suffix to the parameter name:

● Parameter instances can be added and deleted.
● Instance numbers are stable.

Drivers specify maximum number of instances:

● Allows reserving space in static memory.
● QGCs know how many instances to expect.

13

How to start two drivers using the same parameter?
We must encode different I2C busses, addresses,
configuration twice somewhere.

INA238#0 is a parameter of instance 0
INA238#1 is a parameter of instance 1

INA238_SHARED is shared between all instances

Create an instance: param add INA238#0
Remove an instance: param rm INA238#0

PX4 Device Manifest | Auterion AG

Parameter Architecture

14

PX4 Device Manifest | Auterion AG

Using Parameters in Code

Reading parameters:

struct px_Ina238 ina238_data;

int ret = load_and_decode_param<px_Ina238>(px4::params::INA238, 0, ina238_data);

Writing parameters:

int ret = store_and_encode_param<px_Ina238>(px4::params::INA238, 0, ina238_data);

Using the generated structs:

PX4_INFO("bus_type: %d, address: %d",

 ina238_data.bus.union_tag, ina238_data.bus.i2c.address);

15

PX4 Device Manifest | Auterion AG

Using Parameters in Airframe Files

16

Have an index based access via the CLI

param add INA238#0
param set-default INA238#0[3] 1
param set-default INA238#0[4] 0x45
param set-default INA238#0[5] 200
param set-default INA238#0[6] 0.0003

● To save FLASH a member name based access is not implemented!
● User does not need to set versions, done automatically by the generated code.

PX4 Device Manifest | Auterion AG

Using Parameters in QGC

17

Access parameters using metadata in parameters.json:

● Can detect encoded parameters as they contain
additional field description.

● Actual encoding/decoding can be done the same way
as in PX4.

Platform-independent by using the DroneCAN
serialization rules!

PX4 Device Manifest | Auterion AG

ina226 auto
ina228 auto
ina238 auto finds INA238#1, INA238#2

for (auto config :
 param_find_instances(params::INA238)) {
 cli.i2c_address = config.bus.i2c.address;
 cli.requested_bus = config.bus.i2c.bus_id;
 cli.keep_running = true;
 cli.param = config;
 ThisDriver::module_start(cli, iterator);
}

Compile-time changes:

● Every driver specifies in CMakeLists.txt if they
support an autostart and in what order.

● Build system generates a startup script that just
calls the drivers with auto command.

Runtime changes:

● Driver main function reads the instance
parameters and translates into the drivers starting.

● Driver gets parameter instance and reads further
config from it directly.

● Updating the parameter instance at runtime can be
read by the driver directly.

Autostarting Drivers

18

PX4 Device Manifest | Auterion AG

Monitoring Drivers

19

Arming checks should be delegated to drivers:

● Each driver registers themselves with the
commander during startup.

● The commander can query them at any time for
their status.

● Less spaghetti code in Commander!

Health monitoring is mostly implemented:

● Every driver implements perf counters.
● But: Do not always deliver useful information.
● But: perf counters are only streamed to ulog

before and after arming. Not helpful in a crash.

⇒ Cleanup perf counters and stream to ulog.

Health Driver::health() {

 if (running && errors == 0)

 return Health::Nominal;

 return Health::Critical;

}

if (i2c_readout() != PX4_OK) {

 perf_count(_bad_transfer_perf);

}

The Future

PX4 Device Manifest | Auterion AG

“Backward Compatible” Parameters

INA238#1.bus_type -> INA238_1_BUS_TYPE
INA238#1.i2c.bus_id -> INA238_1_I2C_BUS_ID
INA238#1.i2c.address -> INA238_1_I2C_ADDRESS

Mavlink limits parameter names to 16-chars:

INA238_1_BUS_TYP
INA238_1_I2C_BUS
INA238_1_I2C_ADD

Generate unique short handle from index:

INA238#1.bus_type -> INA238_1A
INA238#1.i2c.bus_id -> INA238_1B
INA238#1.i2c.address -> INA238_1C

21

Destructure the subfields into separate parameters:

● Concatenate instance and subfield name.
● Map subfields to native types.

○ Integers → int32
○ floating points → float32.
○ booleans → bitmask.

This works for DroneCAN, but not for MAVLink:

● MAVLink has a parameter name limit of 16 chars.
● Precision can be lost: float16 vs float32.
● MAVLink can only send 32-bits per parameter.
● float64 and >int32 unsupported.

⇒ Add index of subfield to instance as letter.
⇒ Limit subfields to 32-bit values.

PX4 Device Manifest | Auterion AG

Next Steps

Non-breaking preparation:

● Introduce DSDL for structured parameters, add runtime API, and CLI tools.
● Implement automatic driver starting and health monitoring.
● Add structured parameter support to QGC and AMC.
● Update documentation and add upgrade path guide.

Breaking roll out:

● Update small set of drivers after internal dogfooding. Parameters need to be updated!
● Update more drivers carefully incorporating user feedback.

Limitations:

● Subfields must be limited 32bit for backward compatibility on Mavlink.
● There will be no more auto detection of external sensors by default!

22

Thanks for your attention! Questions?

